Django适合做大用户量的系统吗?

栏目: Python · 发布时间: 7年前

内容简介:Django适合做大用户量的系统吗?

源于知乎问题: https://www.zhihu.com/question/265263719

分几点来答:

1. 首先,这其实是个技术选型题。

做技术选型的时候不能单纯的考虑性能,应该优先考虑业务类型,以及团队水平。另外的话,框架只是其中一环,还有配套呢。

如果是数据驱动型,尤其是要用到关系型数据库,那么选择Django足以,ORM会比较省事,但是性能损耗是个很明显的问题。不过还是看团队,如果大家玩flask或者bottle都贼溜,那么还要什么Django,自己造就行了。(题外话,不过你得提防比较水的人破坏整体结构)

如果下游是由很多微服务构成的,Tornado处理起来会有一定优势,用它的异步模型。(而不是用同步的方式写代码23333,要是这么用的话,你让flask怎么想,让bottle怎么想,让村东头的sanic怎么想 <-.<- )

2. Django能抗多少量?

上面选型如果定下来Django了,那么剩下的就是“Where there is a will, there is a way”的问题。这个问题跟“Where there is a way, there is a will”的差别在于,并不是框架能支撑你到多大的并发量,而是你想要抗住很大的并发量,怎么优化现有框架。

当你的项目大到一定程度,瓶颈基本不在框架上(换语言另说,有人不懂框架乱搞的另说)。

我们用Django开发对外的产品不多,量级10w 100w的都有,但是我们上线前的准备都是朝着要抗足够高的流量目标的(谁没有一颗抗万亿流量的心呢),并且要能够通过增加机器提高承载能力。当然有些业务类型没法通过简单的增加机器来进行扩容,那只能通过其他途径优化单机的TPS。所以最终压测的结果都要远高于真实流量。百万量级的产品,扛起来并不费力。不过还是强调一下,看业务类型!

3. 用户体验问题

当量级变大之后,影响用户体验吗?

用户体验分很多方面,包括交互,设计,前端,后端。这里讨论的是后端,那么就说后端。后端对用户体验的影响只有一个——那就是响应时间。当你的网站或者接口有一个用户访问时,能在短时间内返回response,那么,当用户量达到10w时,是否能在同样的时间内返回response呢?这是个问题。

对于后端来说,把响应时间控制在合理的范围之内是很重要的。20ms和30ms或许差别不大,但是50ms跟100ms会有明显差别。

怎么衡量合理的返回时间呢?

这块还是得说点细节,比方说Django的系统,一个用户请求进来了,需要涉及多少次 Redis 查询,平均每次响应时间是多少;涉及到多少次内网或者外网的HTTP请求,平均响应时间是多少;涉及到多少次 MySQL 查询,平均响应时间是多少。

所以大家面试时都喜欢问一个问题:用户输入网址之后,到页面展示出来的详细过程是什么?

当你知道了所有的细节之后,你就能知道,如果系统只涉及到Redis查询,那应该多少ms内返回是合理的,如果你发现nginx日志里面的后端响应时间高于你的预期,那你就得排查下了。其他的也是类似。

所以当谈论到后端上的用户体验时,我自己的看法就是,能多快就多快的给他数据。磨磨唧唧,妥妥拽拽的最招人烦。

----EOF-----

扫码关注,或者搜索微信公众号:码农悟凡

Django适合做大用户量的系统吗?

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

计算机与人脑

计算机与人脑

[美] 约·冯·诺意曼 / 甘子玉 / 商务印书馆 / 1965-3 / 7.00元

《计算机与人脑》是自动机(以电子计算机为代表)理论研究中的重要材料之一。原书是冯·诺意曼在1955-1956年准备讲演用的未完成稿。著者从数学的角度,主要是从逻辑和统计数学的角度,探讨计算机的运算和人脑思维的过程,进行了一些比较研究。书中的许多技术推论带有预测性,尚待今后实验研究及进一步探讨才能判断其是否正确。一起来看看 《计算机与人脑》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码