开源词云生成器 Cloudia

栏目: IT技术 · 发布时间: 4年前

内容简介:Tools to easily create a word cloud.from str or List[str]example from :

Cloudia

Tools to easily create a word cloud.

from string

from str or List[str]

from cloudia import Cloudia

text1 = "text data..."
text2 = "text data..."

# from str
Cloudia(text1).plot()

# from list
Cloudia([text1, text2]).plot()

example from : 20 Newsgroups

开源词云生成器 Cloudia

We can also make it from Tuple.

from cloudia import Cloudia

text1 = "text data..."
text2 = "text data..."
Cloudia([ ("cloudia 1", text1), ("cloudia 2", text2) ]).plot()

Tuple is ("IMAGE TITLE", "TEXT").

from pandas

We can use pandas.

df = pd.DataFrame({'wc1': ['sample1','sample2'], 'wc2': ['hoge hoge piyo piyo fuga', 'hoge']})

# plot from df
Cloudia(df).plot()

# add df method
df.wc.plot(dark_theme=True)

from pandas.DataFrame or pandas.Series.

开源词云生成器 Cloudia 开源词云生成器 Cloudia

We can use Tuple too.

Cloudia( ("IMAGE TITLE", pd.Series(['hoge'])) ).plot()

from japanese

We can process Japanese too.

text = "これはCloudiaのテストです。WordCloudをつくるには本来、形態素解析の導入が必要になります。Cloudiaはmecabのような形態素解析器の導入は必要はなくnagisaを利用した動的な生成を行う事ができます。nagisaとjapanize-matplotlibは、形態素解析を必要としてきたWordCloud生成に対して、Cloudiaに対して大きく貢献しました。ここに感謝の意を述べたいと思います。"

Cloudia(text).plot()

from japanese without morphological analysis module.

开源词云生成器 Cloudia

No need to introduce morphological analysis.

Install

pip install cloudia

Args

Cloudia args.

Cloudia(
  data,    # text data
  single_words=[],    # It's not split word list, example: ["neural network"]
  stop_words=STOPWORDS,    # not count words, default is wordcloud.STOPWORDS
  extract_postags=['名詞', '英単語', 'ローマ字文'],    # part of speech for japanese
  parse_func=None,    # split text function, example: lambda x: x.split(',')
  multiprocess=True,    # Flag for using multiprocessing
  individual=False    # flag for ' '.join(word) with parse 
)

plot method args.

Cloudia().plot(
    dark_theme=False,    # color theme
    title_size=12,     # title text size
    row_num=3,    # for example, 12 wordcloud, row_num=3 -> 4*3image
    figsize_rate=2    # figure size rate
)

save method args.

Cloudia().save(
    file_path,    # save figure image path
    dark_theme=False,
    title_size=12, 
    row_num=3,
    figsize_rate=2
)

pandas.DataFrame, pandas.Series wc.plot method args.

DataFrame.wc.plot(
  single_words=[],    # It's not split word list, example: ["neural network"]
  stop_words=STOPWORDS,    # not count words, default is wordcloud.STOPWORDS
  extract_postags=['名詞', '英単語', 'ローマ字文'],    # part of speech for japanese
  parse_func=None,    # split text function, example: lambda x: x.split(',')
  multiprocess=True,    # Flag for using multiprocessing
  individual=False,    # flag for ' '.join(word) with parse 
  dark_theme=False,    # color theme
  title_size=12,     # title text size
  row_num=3,    # for example, 12 wordcloud, row_num=3 -> 4*3image
  figsize_rate=2    # figure size rate
)

If we use wc.save, setting file_path args.

Thanks


以上所述就是小编给大家介绍的《开源词云生成器 Cloudia》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

RESTful Web Services Cookbook中文版

RESTful Web Services Cookbook中文版

Subbu Allamaraju / 丁雪丰、常可 / 电子工业出版社 / 2011-9 / 59.00元

RESTful Web Services Cookbook中文版:REST最佳实践手册,ISBN:9787121143908,作者:(美)Subbu Allamaraju(沙布·阿拉马拉尤)著,丁雪丰,常可 译一起来看看 《RESTful Web Services Cookbook中文版》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

html转js在线工具
html转js在线工具

html转js在线工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具