内容简介:Tools to easily create a word cloud.from str or List[str]example from :
Cloudia
Tools to easily create a word cloud.
from string
from str or List[str]
from cloudia import Cloudia text1 = "text data..." text2 = "text data..." # from str Cloudia(text1).plot() # from list Cloudia([text1, text2]).plot()
example from : 20 Newsgroups
We can also make it from Tuple.
from cloudia import Cloudia text1 = "text data..." text2 = "text data..." Cloudia([ ("cloudia 1", text1), ("cloudia 2", text2) ]).plot()
Tuple is ("IMAGE TITLE", "TEXT").
from pandas
We can use pandas.
df = pd.DataFrame({'wc1': ['sample1','sample2'], 'wc2': ['hoge hoge piyo piyo fuga', 'hoge']}) # plot from df Cloudia(df).plot() # add df method df.wc.plot(dark_theme=True)
from pandas.DataFrame or pandas.Series.
We can use Tuple too.
Cloudia( ("IMAGE TITLE", pd.Series(['hoge'])) ).plot()
from japanese
We can process Japanese too.
text = "これはCloudiaのテストです。WordCloudをつくるには本来、形態素解析の導入が必要になります。Cloudiaはmecabのような形態素解析器の導入は必要はなくnagisaを利用した動的な生成を行う事ができます。nagisaとjapanize-matplotlibは、形態素解析を必要としてきたWordCloud生成に対して、Cloudiaに対して大きく貢献しました。ここに感謝の意を述べたいと思います。" Cloudia(text).plot()
from japanese without morphological analysis module.
No need to introduce morphological analysis.
Install
pip install cloudia
Args
Cloudia args.
Cloudia( data, # text data single_words=[], # It's not split word list, example: ["neural network"] stop_words=STOPWORDS, # not count words, default is wordcloud.STOPWORDS extract_postags=['名詞', '英単語', 'ローマ字文'], # part of speech for japanese parse_func=None, # split text function, example: lambda x: x.split(',') multiprocess=True, # Flag for using multiprocessing individual=False # flag for ' '.join(word) with parse )
plot method args.
Cloudia().plot( dark_theme=False, # color theme title_size=12, # title text size row_num=3, # for example, 12 wordcloud, row_num=3 -> 4*3image figsize_rate=2 # figure size rate )
save method args.
Cloudia().save( file_path, # save figure image path dark_theme=False, title_size=12, row_num=3, figsize_rate=2 )
pandas.DataFrame, pandas.Series wc.plot method args.
DataFrame.wc.plot( single_words=[], # It's not split word list, example: ["neural network"] stop_words=STOPWORDS, # not count words, default is wordcloud.STOPWORDS extract_postags=['名詞', '英単語', 'ローマ字文'], # part of speech for japanese parse_func=None, # split text function, example: lambda x: x.split(',') multiprocess=True, # Flag for using multiprocessing individual=False, # flag for ' '.join(word) with parse dark_theme=False, # color theme title_size=12, # title text size row_num=3, # for example, 12 wordcloud, row_num=3 -> 4*3image figsize_rate=2 # figure size rate )
If we use wc.save, setting file_path args.
Thanks
以上所述就是小编给大家介绍的《开源词云生成器 Cloudia》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 开源词云生成器 Cloudia
- 开源海报生成器 2.0,功能更强大,速度更快。
- 开源海报生成器 2.0,功能更强大,速度更快。
- 开源 | Jeecg-Boot:基于代码生成器的 Java 快速开发平台,2100+ Star
- 宫崎骏动画里的新垣结衣见过没?这个开源动漫生成器让你的照片秒变手绘日漫
- 020.Python生成器和生成器函数
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
算法技术手册(原书第2版)
George T. Heineman、Gary Pollice、Stanley Selkow / 杨晨、曹如进 / 机械工业出版社 / 2017-8-1 / 89.00元
本书使用实际代码而非伪代码来描述算法,并以经验主导支撑数学分析,侧重于应用且规范严谨。本书提供了用多种程序设计语言实现的文档化的实际代码解决方案,还介绍了近40种核心算法,其中包括用于计算点集的Voronoi图的Fortune算法、归并排序、多线程快速排序、AVL平衡二叉树实现以及空间算法。一起来看看 《算法技术手册(原书第2版)》 这本书的介绍吧!