开源词云生成器 Cloudia

栏目: IT技术 · 发布时间: 5年前

内容简介:Tools to easily create a word cloud.from str or List[str]example from :

Cloudia

Tools to easily create a word cloud.

from string

from str or List[str]

from cloudia import Cloudia

text1 = "text data..."
text2 = "text data..."

# from str
Cloudia(text1).plot()

# from list
Cloudia([text1, text2]).plot()

example from : 20 Newsgroups

开源词云生成器 Cloudia

We can also make it from Tuple.

from cloudia import Cloudia

text1 = "text data..."
text2 = "text data..."
Cloudia([ ("cloudia 1", text1), ("cloudia 2", text2) ]).plot()

Tuple is ("IMAGE TITLE", "TEXT").

from pandas

We can use pandas.

df = pd.DataFrame({'wc1': ['sample1','sample2'], 'wc2': ['hoge hoge piyo piyo fuga', 'hoge']})

# plot from df
Cloudia(df).plot()

# add df method
df.wc.plot(dark_theme=True)

from pandas.DataFrame or pandas.Series.

开源词云生成器 Cloudia 开源词云生成器 Cloudia

We can use Tuple too.

Cloudia( ("IMAGE TITLE", pd.Series(['hoge'])) ).plot()

from japanese

We can process Japanese too.

text = "これはCloudiaのテストです。WordCloudをつくるには本来、形態素解析の導入が必要になります。Cloudiaはmecabのような形態素解析器の導入は必要はなくnagisaを利用した動的な生成を行う事ができます。nagisaとjapanize-matplotlibは、形態素解析を必要としてきたWordCloud生成に対して、Cloudiaに対して大きく貢献しました。ここに感謝の意を述べたいと思います。"

Cloudia(text).plot()

from japanese without morphological analysis module.

开源词云生成器 Cloudia

No need to introduce morphological analysis.

Install

pip install cloudia

Args

Cloudia args.

Cloudia(
  data,    # text data
  single_words=[],    # It's not split word list, example: ["neural network"]
  stop_words=STOPWORDS,    # not count words, default is wordcloud.STOPWORDS
  extract_postags=['名詞', '英単語', 'ローマ字文'],    # part of speech for japanese
  parse_func=None,    # split text function, example: lambda x: x.split(',')
  multiprocess=True,    # Flag for using multiprocessing
  individual=False    # flag for ' '.join(word) with parse 
)

plot method args.

Cloudia().plot(
    dark_theme=False,    # color theme
    title_size=12,     # title text size
    row_num=3,    # for example, 12 wordcloud, row_num=3 -> 4*3image
    figsize_rate=2    # figure size rate
)

save method args.

Cloudia().save(
    file_path,    # save figure image path
    dark_theme=False,
    title_size=12, 
    row_num=3,
    figsize_rate=2
)

pandas.DataFrame, pandas.Series wc.plot method args.

DataFrame.wc.plot(
  single_words=[],    # It's not split word list, example: ["neural network"]
  stop_words=STOPWORDS,    # not count words, default is wordcloud.STOPWORDS
  extract_postags=['名詞', '英単語', 'ローマ字文'],    # part of speech for japanese
  parse_func=None,    # split text function, example: lambda x: x.split(',')
  multiprocess=True,    # Flag for using multiprocessing
  individual=False,    # flag for ' '.join(word) with parse 
  dark_theme=False,    # color theme
  title_size=12,     # title text size
  row_num=3,    # for example, 12 wordcloud, row_num=3 -> 4*3image
  figsize_rate=2    # figure size rate
)

If we use wc.save, setting file_path args.

Thanks


以上所述就是小编给大家介绍的《开源词云生成器 Cloudia》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Rationality for Mortals

Rationality for Mortals

Gerd Gigerenzer / Oxford University Press, USA / 2008-05-02 / USD 65.00

Gerd Gigerenzer's influential work examines the rationality of individuals not from the perspective of logic or probability, but from the point of view of adaptation to the real world of human behavio......一起来看看 《Rationality for Mortals》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码