基于Python的深度学习库Keras的中文文档

栏目: Python · 发布时间: 6年前

内容简介:基于Python的深度学习库Keras的中文文档

Keras:基于 Python 的深度学习库

这就是Keras

Keras是一个高层神经网络API,Keras由纯Python编写而成并基 TensorflowTheano 以及 CNTK 后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras:

  • 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)
  • 支持CNN和RNN,或二者的结合
  • 无缝CPU和GPU切换

Keras适用的Python版本是:Python 2.7-3.6

Keras的设计原则是

  • 用户友好:Keras是为人类而不是天顶星人设计的API。用户的使用体验始终是我们考虑的首要和中心内容。Keras遵循减少认知困难的最佳实践:Keras提供一致而简洁的API, 能够极大减少一般应用下用户的工作量,同时,Keras提供清晰和具有实践意义的bug反馈。
  • 模块性:模型可理解为一个层的序列或数据的运算图,完全可配置的模块可以用最少的代价自由组合在一起。具体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可以使用它们来构建自己的模型。
  • 易扩展性:添加新模块超级容易,只需要仿照现有的模块编写新的类或函数即可。创建新模块的便利性使得Keras更适合于先进的研究工作。
  • 与Python协作:Keras没有单独的模型配置文件类型(作为对比,caffe有),模型由python代码描述,使其更紧凑和更易debug,并提供了扩展的便利性。

关于Keras-cn

本文档是Keras文档的中文版,包括 keras.io 的全部内容,以及更多的例子、解释和建议

现在,keras-cn的版本号将简单的跟随最新的keras release版本

由于作者水平和研究方向所限,无法对所有模块都非常精通,因此文档中不可避免的会出现各种错误、疏漏和不足之处。如果您在使用过程中有任何意见、建议和疑问,欢迎发送邮件到moyan_work@foxmail.com与我取得联系。

您对文档的任何贡献,包括文档的翻译、查缺补漏、概念解释、发现和修改问题、贡献示例程序等,均会被记录在致谢,十分感谢您对Keras中文文档的贡献!

如果你发现本文档缺失了官方文档的部分内容,请积极联系我补充。

本文档相对于原文档有更多的使用指导和概念澄清,请在使用时关注文档中的Tips,特别的,本文档的额外模块还有:

  • Keras新手指南:我们新提供了“Keras新手指南”的页面,在这里我们对Keras进行了感性介绍,并简单介绍了Keras配置方法、一些小知识与使用陷阱,新手在使用前应该先阅读本部分的文档。
  • Keras资源:在这个页面,我们罗列一些Keras可用的资源,本页面会不定期更新,请注意关注
  • 深度学习与Keras:位于导航栏最下方的该模块翻译了来自Keras作者博客 keras.io 和其他Keras相关博客的文章,该栏目的文章提供了对深度学习的理解和大量使用Keras的例子,您也可以向这个栏目投稿。 所有的文章均在醒目位置标志标明来源与作者,本文档对该栏目文章的原文不具有任何处置权。如您仍觉不妥,请联系本人(moyan_work@foxmail.com)删除。

当前版本与更新

如果你发现本文档提供的信息有误,有两种可能:

  • 你的Keras版本过低:记住Keras是一个发展迅速的深度学习框架,请保持你的Keras与官方最新的release版本相符
  • 我们的中文文档没有及时更新:如果是这种情况,请发邮件给我,我会尽快更新

目前文档的版本号是2.0.9,对应于官方的2.0.9 release 版本, 本次更新的主要内容是:

  • recurrent新增ConvLSTM2D,SimpleRNNCell, LSTMCell, GRUCell, StackedRNNCells, CuDNNGRE, CuDNNLSTM层
  • application中新增了模型InceptionResNetV2
  • datasets新增fasion mnist
  • FAQ新增Keras的多GPU卡运行指南
  • utils新增多卡支持函数multi_gpu_model
  • model.compile和model.fit API更新
  • 由于年久失修, 深度学习与Keras 栏目中的很多内容的代码已经不再可用,我们决定在新的文档中移除这部分。仍然想访问这些内容(以及已经被移除的一些层,如Maxout)的文档的同学,请下载 中文文档 的legacy文件夹,并使用文本编辑器(如sublime)打开对应.md文件。
  • 修正了一些错误,感谢@孙永海,@Feng Ying的指正
  • 此外,感谢@zh777k制作了Keras2.0.4中文文档的离线版本,对于许多用户而言,这个版本的keras对大多数用户而言已经足够使用了。下载地址在 百度云盘

注意,keras在github上的master往往要高于当前的release版本,如果你从源码编译keras,可能某些模块与文档说明不相符,请以官方Github代码为准

快速开始:30s上手Keras

Keras的核心数据结构是“模型”,模型是一种组织网络层的方式。Keras中主要的模型是Sequential模型,Sequential是一系列网络层按顺序构成的栈。你也可以查看函数式模型来学习建立更复杂的模型

Sequential模型如下

from keras.models import Sequential

model = Sequential()

将一些网络层通过 .add() 堆叠起来,就构成了一个模型:

from keras.layers import Dense, Activation

model.add(Dense(units=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(units=10))
model.add(Activation("softmax"))

完成模型的搭建后,我们需要使用 .compile() 方法来编译模型:

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

编译模型时必须指明损失函数和优化器,如果你需要的话,也可以自己定制损失函数。Keras的一个核心理念就是简明易用,同时保证用户对Keras的绝对控制力度,用户可以根据自己的需要定制自己的模型、网络层,甚至修改源代码。

from keras.optimizers import SGD
model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9, nesterov=True))

完成模型编译后,我们在训练数据上按batch进行一定次数的迭代来训练网络

model.fit(x_train, y_train, epochs=5, batch_size=32)

当然,我们也可以手动将一个个batch的数据送入网络中训练,这时候需要使用:

model.train_on_batch(x_batch, y_batch)

随后,我们可以使用一行代码对我们的模型进行评估,看看模型的指标是否满足我们的要求:

loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)

或者,我们可以使用我们的模型,对新的数据进行预测:

classes = model.predict(x_test, batch_size=128)

搭建一个问答系统、图像分类模型,或神经图灵机、word2vec词嵌入器就是这么快。支撑深度学习的基本想法本就是简单的,现在让我们把它的实现也变的简单起来!

为了更深入的了解Keras,我们建议你查看一下下面的两个tutorial

还有我们的新手教程,虽然是面向新手的,但我们阅读它们总是有益的:

在Keras代码包的examples文件夹里,我们提供了一些更高级的模型:基于记忆网络的问答系统、基于LSTM的文本的文本生成等。

安装

Keras使用了下面的依赖包,三种后端必须至少选择一种,我们建议选择tensorflow。

  • numpy,scipy
  • pyyaml
  • HDF5, h5py(可选,仅在模型的save/load函数中使用)
  • 如果使用CNN的推荐安装cuDNN

当使用TensorFlow为后端时:

当使用Theano作为后端时:

当使用CNTK作为后端时:

“后端”翻译自backend,指的是Keras依赖于完成底层的张量运算的软件包。

从源码安装Keras时,首先git clone keras的代码:

git clone https://github.com/fchollet/keras.git

接着 cd 到Keras的文件夹中,并运行下面的安装命令:

sudo python setup.py install

你也可以使用PyPI来安装Keras

sudo pip install keras

如果你用的是virtualenv虚拟环境,不要用sudo就好。

详细的Windows和 Linux 安装教程请参考“Keras新手指南”中给出的安装教程,特别鸣谢SCP-173编写了这些教程

在Theano、CNTK、TensorFlow间切换

Keras默认使用TensorFlow作为后端来进行张量操作,如需切换到Theano,请查看这里

技术支持

你可以在下列网址提问或加入Keras开发讨论:

你也可以在 Github issues 里提问或请求新特性。在提问之前请确保你阅读过我们的 指导

另外,对于习惯中文的用户,我们推荐在 “集智”平台 提问,该平台由Kaiser等搭建,支持在线代码运行环境,我本人会经常访问该网站解答问题

最后,我们也欢迎同学们加我们的QQ群119427073进行讨论(潜水和灌水会被T,入群说明公司/学校-职位/年级)

小额赞助

如果你觉得本文档对你的研究和使用有所帮助,欢迎扫下面的二维码对作者进行小额赞助,以鼓励作者进一步完善文档内容,提高文档质量。同时,不妨为 本文档的github 加颗星哦

基于Python的深度学习库Keras的中文文档


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

法律论证理论

法律论证理论

罗伯特·阿列克西 / 舒国滢 / 中国法制出版社 / 2002-12-01 / 30.00

阿列克西的著作探讨的主要问题是如法律裁决之类的规范性陈述如何以理性的方式证立。阿列克西将规范性陈述的证立过程看作实践商谈或“实践言说”,而将法律裁决的证立过程视为“法律言说” 。由于支持法律规范的法律商谈是普遍实践言说的特定形式,所以法律论证理论应当立基于这种一般理论。 在阿列克西看来,如果裁决是理性言说的结果,那么这一规范性陈述就是真实的或可接受的。其基本观念在于法律裁决证立的合理性取决于......一起来看看 《法律论证理论》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

html转js在线工具
html转js在线工具

html转js在线工具