内容简介:About a month ago,In this article, I am going to discuss my experience studying for the TensorFlow Developer Certificate exam. Since there are plenty of amazing resources and guides shared by other learners, and you probably have seen some already, I am no
Resources and tips that will help you prepare for the certificate exam
About a month ago, Deep Learning was a foreign concept to me — I barely had any theoretical background in it, and I had 0 practical experience coding neural networks. Now, a month later, I received the TensorFlow Developer Certificate, and I am pretty confident in building and training deep learning models using the state-of-the-art toolbox.
In this article, I am going to discuss my experience studying for the TensorFlow Developer Certificate exam. Since there are plenty of amazing resources and guides shared by other learners, and you probably have seen some already, I am not going to repeat them. Instead, I will focus on my learning strategy and exam-taking experience. I hope you find this article different but useful.
If you would like to read about other learner’s experiences, all the links are listed at the end of this article. They have helped me a lot, and I hope they can benefit you too!
1. Theory vs. Practice
Albert Einstein once said, “In theory, theory and practice are the same. In practice, they are not.” In machine learning, especially areas of deep learning, we find it hard to give definitive answers. Which optimizer should I use? What the learning rate should be? How many layers should I have in my neural network? Although we have come up with ‘rule of thumb’ to deal with certain scenarios, most of the problem solving involves ‘trial and error.’
But at the same time, only if we understand the theory behind a model can we properly apply suitable methods to construct and optimize it.
Do not rush to build a working model. Make sure you understand the mechanisms behind it and the correct ways to improve its performance. Please always keep this in mind while you are studying for this exam.
2. Reading and Coding
In my exam preparation, I forced myself to keep a healthy balance between reading theoretical concepts and coding.
In the morning, I usually watch several videos from TensorFlow in Practice Specialization on Coursera and go through some exercises that come with the course. In the afternoon, I read the Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow book, and try to mimic the code from the book (These 2 are the most helpful resources for the exam, there are more resources listed at the end of this article).
Everyone’s learning habit is different, so you should make your own plans. Just remember to balance between reading and practicing.
3. Jupyter Notebook and PyCharm
The exercises that come with the Coursera course are all in Jupyter Notebook and Google Colab. But the actual exam environment is in PyCharm.
For learning purposes, Jupyter Notebook is great since it allows you to see the output of one cell immediately after hitting ‘shift+enter.’ This feature makes it a lot easier for you to debug your code as well. However, in the exam, and in real life when you are deploying a machine learning model, you will be using some IDEs or text editors and code in an object-oriented way. Therefore, I strongly suggest you familiarize yourself with the PyCharm environment before the exam, practicing debugging in PyCharm rather than relying on Jupyter Notebook.
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
明解C语言(第3版)
[日] 柴田望洋 / 管杰、罗勇、杜晓静 / 人民邮电出版社 / 2015-11-1 / 79.00元
本书是日本的C语言经典教材,自出版以来不断重印、修订,被誉为“C语言圣经”。 本书图文并茂,示例丰富,第3版从190段代码和164幅图表增加至205段代码和220幅图表,对C语言的基础知识进行了彻底剖析,内容涉及数组、函数、指针、文件操作等。对于C语言语法以及一些难以理解的概念,均以精心绘制的示意图,清晰、通俗地进行讲解。原著在日本广受欢迎,始终位于网上书店C语言著作排行榜首位。一起来看看 《明解C语言(第3版)》 这本书的介绍吧!