内容简介:FoolNLTK之前发布了分词等功能,但很多场景需要自定义模型,现发布训练代码,只需要准备好训练数据,其他交给工具完成。 另外修改了之前用户词典合并局部出现的 Bug。 提供训练和模型调用接口详情查看项目地址。 ...
FoolNLTK之前发布了分词等功能,但很多场景需要自定义模型,现发布训练代码,只需要准备好训练数据,其他交给 工具 完成。
另外修改了之前用户词典合并局部出现的 Bug。
提供训练和模型调用接口详情查看项目地址。
FoolNLTK是一款中文处理工具包
特点
可能不是最快的开源中文分词,但很可能是最准的开源中文分词
基于BiLSTM模型训练而成
包含分词,词性标注,实体识别, 都有比较高的准确率
用户自定义词典
可训练自己的模型
用户自定义词典
词典格式格式如下,词的权重越高,词的长度越长就越越可能出现, 权重值请大于1
难受香菇 10 什么鬼 10 分词工具 10 北京 10 北京天安门 10
加载词典
import fool fool.load_userdict(path) text = "我在北京天安门看你难受香菇" print(fool.cut(text)) # ['我', '在', '北京天安门', '看', '你', '难受香菇']
删除词典
fool.delete_userdict();
词性标注
import fool
text = "一个傻子在北京"
print(fool.pos_cut(text))
#[('一个', 'm'), ('傻子', 'n'), ('在', 'p'), ('北京', 'ns')]实体识别
import fool text = "一个傻子在北京" words, ners = fool.analysis(text) print(ners) #[(5, 8, 'location', '北京')]
【声明】文章转载自:开源中国社区 [http://www.oschina.net]
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 也谈 Python 的中文编码处理
- 自然语言处理之中文自动分词
- R语言自然语言处理:中文分词
- 中文自然语言处理数据集:ChineseNLPCorpus
- SnowNLP情感分析使用教程(中文文本处理库)
- FoolNLTK 发布 Java 版,基于深度学习的中文文本处理工具
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
数学建模
[美] Frank R.Giordano,Maurice D.Weir,William P.Fox / 机械工业出版社 / 2004-1 / 45.00元
数学建模是用数学方法解决各种实际问题的桥梁。本书分离散建模(第1~9章)和连续建模(第10~13章)两部分介绍了整个建模过程的原理,通过本书的学习,学生将**会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。 ·论证了离散动力系统,离散优化等技术对现代应用数学的发展的促进作用。 ·在创造性模型和经验模型的构建、模型分析以及模型研究中融入个人项目和小组......一起来看看 《数学建模》 这本书的介绍吧!