Evaluating Checkpointing in PostgreSQL

栏目: IT技术 · 发布时间: 4年前

内容简介:To evaluate PostgreSQL I will use a not identical but similar scenario: using sysbench-tpcc with 1000 Warehouses, and as with sysbench you can produce tpcc-like workload for PostgreSQL:

Evaluating Checkpointing in PostgreSQL Continuing with the checkpointing topic I started a month ago with my blog post MongoDB Checkpointing Woes , this time I want to review how PostgreSQL performs in this area. After this, I will be taking a look at MySQL and MariaDB. If anything, it will be fair not only to complain about MongoDB but to review how other databases handle it, as well.

Benchmark

To evaluate PostgreSQL I will use a not identical but similar scenario: using sysbench-tpcc with 1000 Warehouses, and as with sysbench you can produce tpcc-like workload for PostgreSQL:

Sysbench-tpcc Supports PostgreSQL (No, Really This Time)

Tuning PostgreSQL for sysbench-tpcc

The hardware I use is:

System | Supermicro; SYS-F619P2-RTN; v0123456789 (Other)
   Platform | Linux
    Release | Ubuntu 18.04.4 LTS (bionic)
     Kernel | 5.3.0-42-generic
Architecture | CPU = 64-bit, OS = 64-bit
  Threading | NPTL 2.27
    SELinux | No SELinux detected
Virtualized | No virtualization detected
# Processor ##################################################
 Processors | physical = 2, cores = 40, virtual = 80, hyperthreading = yes
     Models | 80xIntel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz
     Caches | 80x28160 KB
# Memory #####################################################
      Total | 187.6G

With the storage on SATA SSD INTEL SSDSC2KB960G8 (Intel Enterprise-grade SSD D3-S4510).

The PostgreSQL config is:

shared_buffers = '140GB'
work_mem = '4MB'
random_page_cost = '1'
maintenance_work_mem = '2GB'
 
wal_level = 'replica'
max_wal_senders = '3'
 
synchronous_commit = 'on'
seq_page_cost = '1'
synchronous_commit = 'on'
 
checkpoint_completion_target = '0.9'
checkpoint_timeout = '900'
 
max_wal_size = '20GB'
min_wal_size = '12GB'
 
autovacuum_vacuum_scale_factor = '0.4'
effective_cache_size = '200GB'
bgwriter_lru_maxpages = '1000'
bgwriter_lru_multiplier = '10.0'
logging_collector = 'ON'
wal_compression = 'ON'
log_checkpoints = 'ON'
archive_mode = 'OFF'
full_page_writes = 'ON'
fsync = 'ON'

The short settings overview:

  • Data will totally fit into memory (The datasize is ~100GB, memory on the server is 188GB, and we allocate 140GB for PostgreSQL shared buffers.)
  • The workload on storage will be mostly write-intensive (reads will be done from memory), with full ACID-compliant and data safe settings on PostgreSQL.
  • I will vary log size from 1GB to 100GB, to see the effect of log sizes on checkpointing.

The benchmark command line is:

./tpcc.lua --pgsql-user=sbtest --pgsql-password=sbtest --pgsql-db=sbtest --time=3600 --threads=56 --report-interval=1 --tables=10 --scale=100 --use_fk=0 --trx_level=RC --db-driver=pgsql --report_csv=yes run 

This means that the benchmark will run for 1 hour, with reporting throughput every 1 sec.

Results

Let’s see what results I’ve got with this setup:

Evaluating Checkpointing in PostgreSQL

That’s an interesting pattern!

Although there are no drops to the floor, we see a saw-like pattern, where throughput raises to ~8000 tps and then drops to ~3000tps (that’s 2.6 times drop!).

It was suggested to check how PostgreSQL would perform with full_page_writes = 'OFF' (this is not a data-safe setting and I would not recommend to use it in production!)

Results with full_page_writes = ‘OFF’

Evaluating Checkpointing in PostgreSQL

This seems to improve the saw-like pattern, but there are micro-drops that are concerning.

If we zoom in only to 50GB WAL size, we can see it in detail:

Evaluating Checkpointing in PostgreSQL

I would be interested to hear ideas on how PostgreSQL results in 1-sec resolution can be improved! If you are interested in the raw results and notebooks, it is available here in GitHub .


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

失业的程序员

失业的程序员

沈逸 / 2014-5-1 / 39.00元

这是一个程序员从失业到自行创业的奋斗历程,虽然囧事连连、过程曲折,却充满了趣味。本书以作者的真实创业经历为主线,文字幽默诙谐,情节生动真实,包括了招聘、团队管理和用户公关,以及技术架构设计、核心代码编写、商务谈判、项目运作等场景经验。 从初期的创业伙伴、领路人,到商业竞争对手,各种复杂的关系在各个关键时刻却都发生了意想不到的逆转。在历经千辛万苦,眼看快要成功时,主人公却几乎再次失业。 ......一起来看看 《失业的程序员》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

MD5 加密
MD5 加密

MD5 加密工具