Resources to Supercharge your Data Science Learning in 2020

栏目: IT技术 · 发布时间: 5年前

内容简介:Advance your understanding of machine learning with this helpful collection of journals, videos, and lectures.No matter your background or level of expertise, building up a store of knowledge across statistics, computer science, and machine learning is key

Advance your understanding of machine learning with this helpful collection of journals, videos, and lectures.

No matter your background or level of expertise, building up a store of knowledge across statistics, computer science, and machine learning is key to your success as a data scientist.

Web Resources

arXiv Sanity — the machine learning discipline is characterized by a particularly furious cascade of new information in the form of arXiv preprints. Fortunately, deep learning hero Andrej Karpathy developed this interface to make keeping up with the latest developments in the field just a little more attainable.

:bookmark: Foundational Papers from the team at Aggregate Intellect (the group behind the ML Explained lectures discussed below), here’s a list of the most influential papers in the data science field.

:art: Distill the team at Google’s Distill has produced a unique journal that offers remarkable visualization tools for groundbreaking ideas. For a more approachable entry point to the field of machine learning, check out Google’s AI Explorables .

:books: Paperspace AI wiki this is the best AI glossary I’ve found so far… hmu in the comments if you encounter a better one!

:triangular_ruler: Short Science focused on spreading ideas through the community, this online forum provides a platform for discussion of influential papers on machine learning.

:panda_face: Chris Albon’s blog — everything you ever wondered how to do in pandas, plus machine learning flash cards for purchase.

:cookie: Cookiecutter Data Science look no further for a template to set up your next data science project.

YouTube Channels

:computer: Crash Course Artificial Intelligence in this 20 episode series, Jabril lays out some fundamentals of machine learning. The Crash Course team also produced a great series on Computer Science that should be required viewing for all of us in the tech sector (and yeah, probably everyone who uses a computer).

:sparkles: ML Explained Canada is like America’s clever older sister who charmed your high school teachers with her brilliance years before you got on the scene. Just when you thought Canada couldn’t seem any more perfect, she goes and makes ML Explained. This fantastic channel features lectures around an hour long that help provide clarity on seminal ideas in ML/AI.

Jay Alammar as of this writing, Jay has produced one video, but I’m confident that this channel is one to keep your eye on for more great content to come. Jay is the incredible creator of Illustrated Transformer , A Visual Guide to Using BERT for the First Time , and more amazingly approachable content.

3 Blue, 1 Brown this channel offers an excellent introduction to statistical concepts underlying the machine learning field. If Grant Sanderson can’t get you excited about learning math, not sure what will.

Podcasts

Nvidia’s AI Podcast since the mid-2010s, Nvidia has been spearheading the rise of GPU computing for deep learning. This podcast features a charasmatic host and an impressive mix of enterprise leaders, startup hustlers, and tech updates.

:telescope: The Data Exchange Ben Lorica tackles machine learning related business cases in each episode. The podcast’s website offers excellent documentation, plus always interesting “related content” with entries dating back to Lorica’s time at O’Reilly.

⚛︎ Journal Club by Data Skeptic this podcast is like sitting in on your super smart friends’ study group. Kyle, Lan, George, and sometimes a guest meet to discuss the latest in data science journal articles and related news.

The TWIML AI podcast — beyond hosting an engaging interview series, TWIML has started offering podcast listening parties, which provides a unique, collaborative learning experience.

:chart_with_upwards_trend: Linear Digressions Katie, an experienced data science educator, explains core ideas in statistics to Ben, an enterprise software engineer and pun enthusiast. This is a great place to start your data science learning journey. Also check out Katie’s Udacity course — this is how I started with DS while I was still picking up the basics of Python.

More Resources

What resources are you using to learn about data science? Drop a line in the comments.


以上所述就是小编给大家介绍的《Resources to Supercharge your Data Science Learning in 2020》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数字民主的迷思

数字民主的迷思

[美] 马修·辛德曼 / 唐杰 / 中国政法大学出版社 / 2015-12-25 / CNY 39.00

马修·辛德曼著的《数字民主的迷思》主要讨论互联网对美国政治的影响,聚焦的是“民主化”这一课题。针对公众关于网络民主的美好想象与过分狂热,它通过对在线竞选、链接结构、流量模式、搜索引擎使用、博客与博主、内容生产的“规模经济”等主题的深入处理,借助大量数据图表与分析,勾勒出互联网政治的种种局限性。尤其表明,网络政治信息仍然为一小群精英与机构所创造和过滤,在网络的每一个层次和领域都仍然遵循着“赢家通吃”......一起来看看 《数字民主的迷思》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具