Automating Machine Learning: Google AutoML-Zero Evolves ML Algorithms From Scratch

栏目: IT技术 · 发布时间: 4年前

内容简介:We often hear how widespread artificial intelligence has become and how it is increasingly affecting our daily lives. But for most people the nature of the tech is a mystery — we know it’s powerful but we don’t know what makes it tick, much less how it’s b

We often hear how widespread artificial intelligence has become and how it is increasingly affecting our daily lives. But for most people the nature of the tech is a mystery — we know it’s powerful but we don’t know what makes it tick, much less how it’s built. While research over the past decade has greatly advanced model structures and learning methods, creating algorithms remains relatively time-consuming and difficult. This has prompted research into automation efforts, or AutoML, aimed at the simplification and democratization of AI.

In a recent ICML paper, Google researchers propose an “AutoML-Zero” approach designed to automatically search for machine learning (ML) algorithms from scratch, requiring minimal human expertise or input. Starting from empty programs, AutoML-Zero uses only basic mathematical operations as building blocks and applies evolutionary methods to automatically find the code for complete ML algorithms.

Automating Machine Learning: Google AutoML-Zero Evolves ML Algorithms From Scratch

The Google researchers propose that previous work on AutoML largely focused on the architecture of neural networks, which often relies on sophisticated expert-designed layers as building blocks. They aim to replace those expert-designed layers with simple mathematical operations and push AutoML a step further to automatically discover complete ML algorithms.

Ideally, AutoML would cover the complete pipeline, from raw datasets to deployable ML models, to totally automate the process of applying ML to real-world problems. This is the ultimate goal — achieving high-level automation that would enable even non-experts to make use of ML models and techniques.

Automating the process of applying ML end-to-end can not only boost model performance but also produce simpler solutions and accelerate the creation of these solutions.

The researchers identify a couple of drawbacks of previous handmade AutoML approaches. First, human-designed components can create biases toward the search results in favour of human-designed algorithms, which may reduce the innovation potential of AutoML. Also, while some AutoML studies have found ways to constrain search spaces to isolated algorithmic aspects, these constrained search spaces add a new burden on researchers and can undermine the original intention of saving their time.

Automatically Search for ML Algorithms From Scratch

To address these limitations, the researchers propose AutoML-Zero, which can search a fine-grained space simultaneously for the model, optimization procedure, initialization, and so on. The approach requires much less human design to automatically search for whole ML algorithms from basic operations with minimal restrictions on form, and even allows the discovery of non-neural network algorithms. The approach “demonstrates the plausibility of automatically discovering more novel ML algorithms to address harder problems in the future,” explain the researchers in a blog post .

In small image classification problems for example, the proposed search method starts from scratch but will eventually automatically “rediscover” fundamental ML techniques such as backpropagation and linear regression that were developed years ago.

The Google researchers adopted a variant of classic evolutionary methods, which have been proven useful in discovering computer programs since the 1980s, to search the space of algorithms.

The Bet on Evolutionary Algorithms

Evolutionary algorithm (EA) is a subset of evolutionary computation, a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character. In evolutionary computation, an initial set of candidate solutions is first generated and then iteratively updated. Each new generation is produced by stochastically removing less-desired solutions and introducing small random changes.

Evolutionary algorithms use mechanisms inspired by biological evolution such as reproduction, mutation, recombination, and selection. EAs often perform well in approximating solutions to a range of problems that would otherwise take too long to exhaustively process.

The use of evolutionary principles for automated problem-solving was formally proposed and developed more than 50 years ago. Artificial evolution became a widely recognized optimization method as a result of the work of German researcher Ingo Rechenberg, who used evolution strategies to solve complex engineering problems in the 1960s and early 1970s.

In 1987, Jürgen Schmidhuber published his first paper on genetic programming, and later that year described first general-purpose learning algorithms in his diploma thesis, Evolutionary Principles in Self-Referential Learning.

Since the 1990s, nature-inspired algorithms have become an increasingly significant part of evolutionary computation. With academic interest continuing to grow and the power of computers continuing to increase, evolutionary algorithms can now be used both to solve multi-dimensional problems more efficiently than software produced by human designers, and can also be used to optimize the design of systems.

The Google researchers found the simplicity and scalability of evolutionary methods especially suitable for the discovery of learning algorithms, and their results demonstrated potential through the discovery of nuanced ML algorithms using evolutionary search.

Exploration of Vast and Sparse Search Spaces

Early research into algorithm learning from scratch focused on reducing the search space and compute required, and this approach has not been revisited much since the early 90s, the researchers wrote.

Existing AutoML search spaces have been constructed to be dense with good solutions, thus deemphasizing the search method itself. AutoML-Zero is different as the space is so generic that it ends up being quite sparse — an accurate algorithm might be as rare as 1 in 10 12 candidates. The genericity of the AutoML-Zero space makes it more difficult to search than existing AutoML methods.

In the AutoML-Zero setup, a typical search struggles to find a solution in a reasonable amount of time. Evolutionary methods however can be tens of thousands of times faster, according to the researchers.

The team first initialized a population with empty programs, which then evolves in repeating cycles to produce better and better learning algorithms. At each cycle, two or more random models compete and the most accurate model gets to be a “parent.” The parent clones itself to produce a child, which then gets mutated — meaning the child’s code is modified in a random way, which could mean for example arbitrarily inserting, removing, or modifying a line in the code. The mutated algorithm is then evaluated on image classification tasks.

Automating Machine Learning: Google AutoML-Zero Evolves ML Algorithms From Scratch

Evolutionary Methods Find Solutions in AutoML-Zero Search Space

Evolutionary search can not only find solutions in the AutoML-Zero search space despite its enormous size and sparsity, but is also able to discover more complex and effective techniques as time passes. Moreover, evolution adapts the algorithm to different task types; for instance, dropout-like operations emerge when the task needs regularization and learning rate decay appears when the task requires faster convergence.

Starting with a population of empty programs, the evolutionary search at the beginning can only find the simplest algorithms that represent linear models with hard-coded weights. However, as time passes, more complex and accurate algorithms can be automatically invented. For example, stochastic gradient descent (SGD) — an iterative method for optimizing an objective function with suitable smoothness properties — can be invented to learn weights.

In their experiments, the first SGD invented was flawed but was automatically fixed quite quickly, triggering a series of improvements to the prediction and learning algorithm. The improvements over the baseline can also be transferred to datasets that are not used during search. In the end, the proposed approach managed to produce a “best evolved algorithm” and construct a model that outperformed hand-crafted designs of comparable complexity.

The final algorithm includes techniques such as noise injection as data augmentation, a bilinear model, gradient normalization, and weight averaging.

The researchers also describe how different lines in the evolved code implement each of these techniques and present ablation studies to verify their values. Through additional experiments, they show that it is possible to guide the evolutionary search by controlling “the habitat” — the tasks on which the evolutionary process evaluates the fitness of the algorithms.

“We consider this to be preliminary work,” the researchers explain. “We have yet to evolve fundamentally new algorithms, but it is encouraging that the evolved algorithm can surpass simple neural networks that exist within the search space.”

Currently the search process still requires significant compute. But the researchers believe with the increased availability of powerful hardware and more efficient search methods, it is likely that the search space will become more inclusive and the results will improve.

The paper AutoML-Zero: Evolving Machine Learning Algorithms From Scratch is on arXiv and the open-sourced code is on GitHub .

Journalist: Yuan Yuan | Editor : Michael Sarazen

Automating Machine Learning: Google AutoML-Zero Evolves ML Algorithms From Scratch

Synced Report |  A Survey of China’s Artificial Intelligence Solutions in Response to the COVID-19 Pandemic — 87 Case Studies from 700+ AI Vendors

This report offers a look at how the Chinese government and business owners have leveraged artificial intelligence technologies in the battle against COVID-19. It is also available on Amazon Kindle .

Click here to find more reports from us.

We know you don’t want to miss any story.  Subscribe to our popular  Synced Global AI Weekly to get weekly AI updates.

Automating Machine Learning: Google AutoML-Zero Evolves ML Algorithms From Scratch

Advertisements


很遗憾的说,推酷将在这个月底关闭。人生海海,几度秋凉,感谢那些有你的时光。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

统计自然语言处理

统计自然语言处理

宗成庆 / 清华大学出版社 / 2008-5 / 66.00元

内容简介 本书全面介绍了统计自然语言处理的基本概念、理论方法和最新研究进展,内容包括形式语言与自动机及其在自然语言处理中的应用、语言模型、隐马尔可夫模型、语料库技术、汉语自动分词与词性标注、句法分析、词义消歧、统计机器翻译、语音翻译、文本分类、信息检索与问答系统、自动文摘和信息抽取、口语信息处理与人机对话系统等,既有对基础知识和理论模型的介绍,也有对相关问题的研究背景、实现方法和技术现状的详......一起来看看 《统计自然语言处理》 这本书的介绍吧!

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具