Kotlin Actors – No Drama Concurrency

栏目: IT技术 · 发布时间: 5年前

内容简介:Essentially,This example

Kotlin Actors are part of the Kotlin Coroutines library. I’ll walk you though the reasons why I use Kotlin Actors to achieve concurrency, while leveraging Coroutines to process reactive events in unknown order.

Kotlin Actors – No Drama Concurrency

Concurrency?

  • Allows events to happen out-of-order or in partial order, without affecting the final outcome.
  • This allows for leveraging parallel execution without giving up determinism.

Why Does Android need Reactive Programming?

  • Click Events
  • Intents
  • Networking Requests
  • Disk Writes
  • etc.

Kotlin Coroutines?

Essentially, Kotlin Coroutines are light-weight threads. They are launched in a context of some CoroutineScope.

Kotlin Actors?

  • A Single Kotlin Coroutine
  • Processes incoming Messages
  • Backed by a Channel
  • Concurrent

Actors receive Messages (Intentions) via a Channel

Channels are the only way to safely communicate across Coroutines.

This example implements a Shopping Cart Dao from my GitHub Project ShoppingApp . I’ve created a type called Intention which are sent across the channel as messages. The intentions represent actions I want to perform, but keep my data thread safe.

sealed class Intention {
    class FindByLabel(
        val label: String,
        val deferred: CompletableDeferred<ItemWithQuantity?>
    ) : Intention()

    class Upsert(val itemWithQuantity: ItemWithQuantity) : Intention()

    class Remove(val itemWithQuantity: ItemWithQuantity) : Intention()

    object Empty : Intention()
}

Actors Process Messages Sequentially in a for() loop

These messages (Intentions) come in across a Channel from other Coroutines, get queued, and then get processed by the Actor sequentially to achieve concurrency.

scope.actor<Intention> {
    for (intention in channel) {
        // Process Messages/Intentions
        when (intention) {
            is Intention.FindByLabel -> {
                // ...
            }
            is Intention.Upsert -> {
                // ...
            }
            is Intention.Remove -> {
                // ...
            }
            is Intention.Empty -> {
                // ...
            }
        }
    }
}
Kotlin Actors – No Drama Concurrency

Sending Messages to the Actor – send() vs offer()

To send messages to the actor, you send a message to it using actor.send(intention) or actor.offer(intention) . Here are the differences between them ( from the Kotlin documentation of SendChannel ).

Kotlin Actors – No Drama Concurrency

CompletableDeferred to await() Results

We send in messages to the actor, but sometimes we want to wait for a result once the message has been processed by the actor. We use CompletableDeferred to do this. We await() the result, like in this example where we are querying for a value:

class FindByLabel(
    val label: String,
    val deferred: CompletableDeferred<ItemWithQuantity?>
) : Intention()
// ---
val deferred = CompletableDeferred<ItemWithQuantity?>()
actor.send(
    Intention.FindByLabel(
        label = label,
        deferred = deferred
    )
)
val result : ItemWithQuantity? = deferred.await()

Aren’t Actors Marked with @ObsoleteCoroutineApi?

Yes, but complex actors will also support the same use cases, and there will be a clear path. Also, there is no planned replacement at this point. See the response from the Kotlin Coroutines tech lead from the GitHub issue :

Kotlin Actors – No Drama Concurrency

Slides & Video (Coming Soon)

I was able to present this to Boston Android meetup group and 18 other meetup groups on Tuesday, July 14th which was an amazing experience. The video will be available soon and I’ll be sure to put it here. Here are the slides for now.

Links


以上所述就是小编给大家介绍的《Kotlin Actors – No Drama Concurrency》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法交易与套利交易

算法交易与套利交易

赵胜民 / 厦门大学出版社 / 2010-9 / 35.00元

《算法交易与套利交易》主要介绍算法交易和一些套利交易的策略,以便于读者对相关方面的内容进行阅读和学习。在《算法交易与套利交易》的第一部分,我们回顾了投资学一些相关的基本内容。其中,前两章介绍了证券投资的收益和风险等特征,以及马可维茨的最优资产配置模型。第3章则介绍了股票投资分析当中常用的资本资产定价模型(CAPM)、套利定价模型(APT),以及因素模型。然后,第4、5章分别讲到了金融证券估值模型、......一起来看看 《算法交易与套利交易》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

html转js在线工具
html转js在线工具

html转js在线工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具