Kotlin Actors – No Drama Concurrency

栏目: IT技术 · 发布时间: 4年前

内容简介:Essentially,This example

Kotlin Actors are part of the Kotlin Coroutines library. I’ll walk you though the reasons why I use Kotlin Actors to achieve concurrency, while leveraging Coroutines to process reactive events in unknown order.

Kotlin Actors – No Drama Concurrency

Concurrency?

  • Allows events to happen out-of-order or in partial order, without affecting the final outcome.
  • This allows for leveraging parallel execution without giving up determinism.

Why Does Android need Reactive Programming?

  • Click Events
  • Intents
  • Networking Requests
  • Disk Writes
  • etc.

Kotlin Coroutines?

Essentially, Kotlin Coroutines are light-weight threads. They are launched in a context of some CoroutineScope.

Kotlin Actors?

  • A Single Kotlin Coroutine
  • Processes incoming Messages
  • Backed by a Channel
  • Concurrent

Actors receive Messages (Intentions) via a Channel

Channels are the only way to safely communicate across Coroutines.

This example implements a Shopping Cart Dao from my GitHub Project ShoppingApp . I’ve created a type called Intention which are sent across the channel as messages. The intentions represent actions I want to perform, but keep my data thread safe.

sealed class Intention {
    class FindByLabel(
        val label: String,
        val deferred: CompletableDeferred<ItemWithQuantity?>
    ) : Intention()

    class Upsert(val itemWithQuantity: ItemWithQuantity) : Intention()

    class Remove(val itemWithQuantity: ItemWithQuantity) : Intention()

    object Empty : Intention()
}

Actors Process Messages Sequentially in a for() loop

These messages (Intentions) come in across a Channel from other Coroutines, get queued, and then get processed by the Actor sequentially to achieve concurrency.

scope.actor<Intention> {
    for (intention in channel) {
        // Process Messages/Intentions
        when (intention) {
            is Intention.FindByLabel -> {
                // ...
            }
            is Intention.Upsert -> {
                // ...
            }
            is Intention.Remove -> {
                // ...
            }
            is Intention.Empty -> {
                // ...
            }
        }
    }
}
Kotlin Actors – No Drama Concurrency

Sending Messages to the Actor – send() vs offer()

To send messages to the actor, you send a message to it using actor.send(intention) or actor.offer(intention) . Here are the differences between them ( from the Kotlin documentation of SendChannel ).

Kotlin Actors – No Drama Concurrency

CompletableDeferred to await() Results

We send in messages to the actor, but sometimes we want to wait for a result once the message has been processed by the actor. We use CompletableDeferred to do this. We await() the result, like in this example where we are querying for a value:

class FindByLabel(
    val label: String,
    val deferred: CompletableDeferred<ItemWithQuantity?>
) : Intention()
// ---
val deferred = CompletableDeferred<ItemWithQuantity?>()
actor.send(
    Intention.FindByLabel(
        label = label,
        deferred = deferred
    )
)
val result : ItemWithQuantity? = deferred.await()

Aren’t Actors Marked with @ObsoleteCoroutineApi?

Yes, but complex actors will also support the same use cases, and there will be a clear path. Also, there is no planned replacement at this point. See the response from the Kotlin Coroutines tech lead from the GitHub issue :

Kotlin Actors – No Drama Concurrency

Slides & Video (Coming Soon)

I was able to present this to Boston Android meetup group and 18 other meetup groups on Tuesday, July 14th which was an amazing experience. The video will be available soon and I’ll be sure to put it here. Here are the slides for now.

Links


以上所述就是小编给大家介绍的《Kotlin Actors – No Drama Concurrency》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

现代编译原理

现代编译原理

Andrew W.Appel、Maia Ginsburg / 人民邮电 / 2005-9 / 59.00元

《现代编译原理:C语言描述(英文版)(本科)》全面讲述了现代编译器的各个组成部分,包括:词法分析、语法分析、抽象语法、语义检查、中间代码表示、指令选择、数据流分析、寄存器分配以及运行时系统等。与大多数编译原理的教材不同,《现代编译原理:C语言描述(英文版)(本科)》采用了函数语言和面向对象语言来描述代码生成和寄存器分配,对于编译器中各个模块之间的接口都给出了实际的 C 语言头文件。 全书分成两部分......一起来看看 《现代编译原理》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具