Modelling the lanuage of the immune system with machine learning (first steps)

栏目: IT技术 · 发布时间: 5年前

内容简介:The full set of antibodies and immune receptors in an individual contains traces of past and current immune responses. These traces can serve as biomarkers for diseases mediated by the adaptive immune system (e.g. infectious disease, organ rejection, autoi

Click here for our improved statistical classifier for immune repertoires, Dynamic Kernel Matching

Statistical classifiers for diagnosing disease from immune repertoires

LABORATORY OF DR. LINDSAY COWELL

Description

The full set of antibodies and immune receptors in an individual contains traces of past and current immune responses. These traces can serve as biomarkers for diseases mediated by the adaptive immune system (e.g. infectious disease, organ rejection, autoimmune disease, cancer). Only a handful of immune receptors that can be sequenced from a patient are expected to contain these traces. Here we present the source code to a method for elucidating these traces.

First, the CDR3 is parsed from every antibody sequence in a patient (see VDJ Server ). The CDR3 is then cut into fixed-length subsequences that we call snippets. These are nothing more than the k-mers of the CDR3. The amino acid residues of each snippet are then described by their biochemical properties in a position dependent manner using Atchley factors .

The main idea is to score every snippet by its biochemical features with a dectector function and to aggregate the scores into a single value that can represent a diagnosis. Because only a handful of snippets are expected to have a high score in patients with a disease, we aggregate the scores together by taking the maximum score. The maximum score is then used to predict the probability that a patient has a positive diagnosis (a high score would suggest a positive diagnosis, no high scores would suggest a negative diagnosis). The parameters of the detector function are fitted by maximizing the log-likelihood (minimizing the cross-entropy error) that each diagnosis is correct.

The model is fitted to the training data using gradient based optimization techniques. First, initial values are randomly drawn for each parameter. Then 2,500 steps of gradient based optimization are used to find a locally optimal fit to the data. We find that the fitting procedure must be repeated hundreds of thousands of times to find a good fit to the training data. Using TensorFlow, the fitting procedure is run repeatedly in parallel on a GPU. We call each thread a "replica", and the "replica" with the best fit to the training data is then scored on unseen and unused data.

For a complete description of this approach, see our publication in BMC Bioinformatics:

Requirements

Download

  • Download: zip
  • Git: git clone https://github.com/jostmey/MaxSnippetModel

Primary Files

  • model.py
  • train.py
  • score.py
  • dataplumbing.py (Data used to develop the approach cannot be made available at this time)
  • dataplumbing_synthetic_data.py (Overwrite dataplumbing.py with this file to see how the model performs on synthetic data)

Update

Improved repertoire classification models are published under:


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

科技想要什么

科技想要什么

[美] 凯文·凯利 / 熊祥 / 中信出版社 / 2011-11 / 58.00元

在《科技想要什么》一书中,凯文•凯利向我们介绍了一种全新的科技观。他认为,作为整体,科技不是由线路和金属构成的一团乱麻,而是有生命力的自然形成的系统,它的起源完全可以回溯到生命的初始时期。正如生物进化呈现出无意识的趋势,科技也是如此。通过追踪这些长期趋势,我们可以对“科技想要什么”有所理解。 凯文•凯利预测了未来数十年科技的12种趋势,包括创造大脑这一得寸进尺之举。不过,为了让人类创造的世界......一起来看看 《科技想要什么》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

在线进制转换器
在线进制转换器

各进制数互转换器

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具