内容简介:Biased codes are a way to represent values with a balanced number of positive and negative numbers using a pre-specified numberTo encode a number such as 127, one simply encodes each of the decimal digits as above, giving (0100, 0101, 1010).
Stibitz code | |
---|---|
Digits | |
Tracks | |
Digit values | 8 4 - 2 - 1 |
Weight(s) | |
Continuity | |
Cyclic | |
Minimum distance | |
Maximum distance | 4 |
Redundancy | 0.7 |
Lexicography | |
Complement | |
Excess-3 , 3-excess or 10-excess-3 binary code (often abbreviated as XS-3 , 3XS or X3 ), shifted binary or Stibitz code (afterGeorge Stibitz,who built a relay-based adding machine in 1937) is a self-complementarybinary-coded decimal (BCD) code andnumeral system. It is a biased representation . Excess-3 code was used on some older computers as well as in cash registers and hand-held portable electronic calculators of the 1970s, among other uses.
Contents
Representation [ edit ]
Biased codes are a way to represent values with a balanced number of positive and negative numbers using a pre-specified number N as a biasing value. Biased codes (andGray codes) are non-weighted codes. In excess-3 code, numbers are represented as decimal digits, and each digit is represented by fourbits as the digit value plus 3 (the "excess" amount):
- The smallest binary number represents the smallest value ( 0 − excess ).
- The greatest binary number represents the largest value ( 2 N +1 − excess − 1 ).
Decimal | Excess-3 | Stibitz | BCD 8-4-2-1 | Binary | 4-of-8Hamming extension | |
---|---|---|---|---|---|---|
−3 | 0000 | pseudo-tetrade | N/A | N/A | N/A | N/A |
−2 | 0001 | pseudo-tetrade | N/A | N/A | N/A | N/A |
−1 | 0010 | pseudo-tetrade | N/A | N/A | N/A | N/A |
0 | 0011 | 0011 | 0000 | 0000 | … 10 | … 0011 |
1 | 0100 | 0100 | 0001 | 0001 | … 11 | … 1011 |
2 | 0101 | 0101 | 0010 | 0010 | … 10 | … 0101 |
3 | 0110 | 0110 | 0011 | 0011 | … 10 | … 0110 |
4 | 0111 | 0111 | 0100 | 0100 | … 00 | … 1000 |
5 | 1000 | 1000 | 0101 | 0101 | … 11 | … 0111 |
6 | 1001 | 1001 | 0110 | 0110 | … 10 | … 1001 |
7 | 1010 | 1010 | 0111 | 0111 | … 10 | … 1010 |
8 | 1011 | 1011 | 1000 | 1000 | … 00 | … 0100 |
9 | 1100 | 1100 | 1001 | 1001 | … 10 | … 1100 |
10 | 1101 | pseudo-tetrade | pseudo-tetrade | 1010 | N/A | N/A |
11 | 1110 | pseudo-tetrade | pseudo-tetrade | 1011 | N/A | N/A |
12 | 1111 | pseudo-tetrade | pseudo-tetrade | 1100 | N/A | N/A |
13 | N/A | N/A | pseudo-tetrade | 1101 | N/A | N/A |
14 | N/A | N/A | pseudo-tetrade | 1110 | N/A | N/A |
15 | N/A | N/A | pseudo-tetrade | 1111 | N/A | N/A |
To encode a number such as 127, one simply encodes each of the decimal digits as above, giving (0100, 0101, 1010).
Excess-3 arithmetic uses differentalgorithms than normal non-biased BCD or binarypositional system numbers. After adding two excess-3 digits, the raw sum is excess-6. For instance, after adding 1 (0100 in excess-3) and 2 (0101 in excess-3), the sum looks like 6 (1001 in excess-3) instead of 3 (0110 in excess-3). In order to correct this problem, after adding two digits, it is necessary to remove the extra bias by subtracting binary 0011 (decimal 3 in unbiased binary) if the resulting digit is less than decimal 10, or subtracting binary 1101 (decimal 13 in unbiased binary) if anoverflow (carry) has occurred. (In 4-bit binary, subtracting binary 1101 is equivalent to adding 0011 and vice versa.)
Motivation [ edit ]
The primary advantage of excess-3 coding over non-biased coding is that a decimal number can benines' complemented (for subtraction) as easily as a binary number can beones' complemented: just by inverting all bits.Also, when the sum of two excess-3 digits is greater than 9, the carry bit of a 4-bit adder will be set high. This works because, after adding two digits, an "excess" value of 6 results in the sum. Because a 4-bit integer can only hold values 0 to 15, an excess of 6 means that any sum over 9 will overflow (produce a carry out).
Another advantage is that the codes 0000 and 1111 are not used for any digit. A fault in a memory or basic transmission line may result in these codes. It is also more difficult to write the zero pattern to magnetic media.
Example [ edit ]
BCD 8-4-2-1 to excess-3 converter example inVHDL:
entity bcd8421xs3 is port ( a : in std_logic; b : in std_logic; c : in std_logic; d : in std_logic; an : buffer std_logic; bn : buffer std_logic; cn : buffer std_logic; dn : buffer std_logic; w : out std_logic; x : out std_logic; y : out std_logic; z : out std_logic ); end entity bcd8421xs3; architecture dataflow of bcd8421xs3 is begin an <= not a; bn <= not b; cn <= not c; dn <= not d; w <= (an and b and d ) or (a and bn and cn) or (an and b and c and dn); x <= (an and bn and d ) or (an and bn and c and dn) or (an and b and cn and dn) or (a and bn and cn and d); y <= (an and cn and dn) or (an and c and d ) or (a and bn and cn and dn); z <= (an and dn) or (a and bn and cn and dn); end architecture dataflow; -- of bcd8421xs3
Extensions [ edit ]
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
现代应用数学手册
《现代应用数学手册》编委会 / 清华大学出版社 / 2005-1-1 / 48.00元
本书是进行科学计算的常备工具书,内容新颖,查阅方便,实用性强。主要介绍生产、科研、管理、数学等实践中在计算机上使用的各种计算方法和技巧。全书分为14章,依次为数值计算概论、插值法、函数逼近与曲线拟合、数值积分与数值微分、方程求根、线性方程组的直接解法和迭代解法、矩阵特征值问题、非线性方程组数值解与最优化方法、常微分方程初值问题和边值问题的数值解法、偏微分方程的数值解法、多重网络法和积分方程数值解法......一起来看看 《现代应用数学手册》 这本书的介绍吧!