OpenAI’s fiction-spewing AI is learning to generate images

栏目: IT技术 · 发布时间: 5年前

Artificial intelligence / Machine learning

OpenAI’s fiction-spewing AI is learning to generate images

By training GPT-2 on pixels instead of words, the model can accept half an image and predict how to complete it.

July 16, 2020

Ben Barry / OpenAI

In February of last year, the San Francisco-based research lab OpenAIannounced that itsAI system could now write convincing passages of English. Feed the beginning of a sentence or paragraph into GPT-2, as it was called, and it could continue the thought for as long as an essay with almost human-like coherence.

Now, the lab is exploring what would happen if the same algorithm were instead fed part of an image. The results , which were given an honorable mention for best paper award at this week’s International Conference on Machine Learning, open up a new avenue for image generation, ripe with opportunity and consequences.

At its core, GPT-2 is a powerful prediction engine. It learned to grasp the structure of the English language by looking at billions of examples of words, sentences, and paragraphs, scraped from the corners of the internet. With that structure, it could then manipulate words into new sentences by statistically predicting the order in which they should appear.

So researchers at OpenAI decided to swap the words for pixels and train the same algorithm on images in ImageNet, the most popular image bank for deep learning. Because the algorithm was designed to work with one-dimensional data, i.e.: strings of text, they unfurled the images into a single sequence of pixels. They found that the new model, named iGPT, was still able to grasp the two-dimensional structures of the visual world. Given the sequence of pixels for the first half of an image, it could predict the second half in ways that a human would deem sensible.

Below, you can see a few examples. The left-most column is the input, the right-most column is the original, and the middle columns are iGPT’s predicted completions. (See more examples here .)

OpenAI’s fiction-spewing AI is learning to generate images

OPENAI

The results are startlingly impressive and demonstrate a new path for using unsupervised learning, which trains on unlabeled data, in the development of computer vision systems. While early computer vision systems in the mid-2000s trialed such techniques before, they fell out of favor as supervised learning, which uses labeled data, proved far more successful. The benefit of unsupervised learning, however, is that it allows an AI system to learn about the world without a human filter, and significantly reduces the manual labor of labeling data.

The fact that iGPT uses the same algorithm as GPT-2 also shows its promising adaptability across domains. This is in line with OpenAI’s ultimate ambition to achieve more generalizable machine intelligence.

At the same time, the method presents a concerning new way to create deepfake images. Generative adversarial networks , the most common category of algorithms used to create deepfakes in the past, must be trained on highly curated data. To get a GAN to generate a face, for example, its training data should only include faces. iGPT, by contrast, simply learns enough of the structure of the visual world across millions and billions of examples to spit out images that could feasibly exist within it. While training the model is still computationally expensive, offering a natural barrier to its access, that may not be the case for long.

OpenAI did not grant an interview request, and therefore did not provide additional context for  future plans with regards to its research. But in an internal policy team meeting that MIT Technology Review attended last year, its policy director Jack Clark mused about the future risks of GPT-style generation, including what would happen if it were applied to images. “Video is coming,” he said, projecting where he saw the field’s research trajectory going. “In probably five years, you’ll have conditional video generation over a five to ten second horizon. The sort of thing I’m imagining is eventually you’ll be able to put a photo of Angela Merkel as the condition, with an explosion next to her, and it will generate a likely output, which will be Angela Merkel getting killed.”


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

长尾理论

长尾理论

[美] 克里斯·安德森 / 乔江涛 / 中信出版社 / 2006-12 / 35.00元

书中阐述,商业和文化的未来不在于传统需求曲线上那个代表“畅销商品”(hits)的头部; 而是那条代表“冷门商品”(misses)经常为人遗忘的长尾。 举例来说, 一家大型书店通常可摆放10万本书,但亚马逊网络书店的图书销售额中,有四分之一来自排名10万以后的书籍。这些“冷门”书籍的销售比例正以高速成长,预估未来可占整体书市的一半。 这意味着消费者在面对无限的选择时,真正想要的东西、和想要取得......一起来看看 《长尾理论》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具