Gender Bias In Machine Translation

栏目: IT技术 · 发布时间: 5年前

Gender Bias In Machine translation

Machine translation models are trained on huge corpuses of text, with pairs of sentences, one a translation of another into a different language. However, there are nuances in language that often make it difficult to provide an accurate and direct translation from one language to another.

When translating from English to languages such as French or Spanish, some gender neutral nouns will be translated into gender specific nouns. For example, the word “friend” in “his friend is kind” is gender neutral in English. However, in Spanish it is gender specific, either “amiga” (feminine) or “amigo” (masculine).

In Spanish the word “friend” is gender specific, either “amiga” or “amigo”

Another example is translation from Turkish to English. Turkish is almost an entirely gender neutral language. The pronoun “o” in Turkish can be translated into English as any of “he”, “she” or “it”. Google claim that 10% of their Turkish translate queries are ambiguous, and could be correctly translated into either gender.

In both these examples, we can see how a phrase in one language can be correctly translated into another language with different variations based on gender. Neither is more correct than the other, and a human with the same translation task would be faced with the same ambiguity without being provided with further context. (The only difference is that perhaps the human would know to ask for further context, or else provide both translations.) This means that it is incorrect to assume that there is always a single correct translation for any given word, phrase or sentence when translating from one language to another.

It is now easy understand why Google Translate was having issues with gender bias. If societal biases meant more men than women had historically become doctors, there would be more examples of male doctors than female doctors in the training data, which is just an accurate historical record of that gender imbalance. The model would learn from this data, resulting in a bias, that doctors are more likely to be male.

Now, when faced with the task of finding a single translation for “o bir doktor”, “he/she is a doctor” from Turkish to English, the model will assume “o” should he translated as he, as doctors are more likely to be male.

One might see how the opposite could occur for nurses.

Request for deletion

About

MC.AI – Aggregated news about artificial intelligence

MC.AI collects interesting articles and news about artificial intelligence and related areas. The contributions come from various open sources and are presented here in a collected form.

The copyrights are held by the original authors, the source is indicated with each contribution.

Contributions which should be deleted from this platform can be reported using the appropriate form (within the contribution).

MC.AI is open for direct submissions, we look forward to your contribution!

Search on MC.AI

mc.ai aggregates articles from different sources - copyright remains at original authors


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

总开关

总开关

[美] 吴修铭 / 顾佳 / 中信出版社 / 2011-8 / 49.00元

当收音机经历从真空管收音机到半导体收音机,再到电晶体收音机的发展升级时,人们觉得自己的资讯来源美满得无可复加了。当约翰.洛吉.贝尔德发明了电视以后,在很长一段时间内,人们都认为电视就是他们所拥有的﹑也是所愿意拥有的最好的资讯媒介。 时至今日,互联网的震撼不亚于以往任何媒介,它给我们带来了最大的信息量,最便捷的自我表达,最迅速的沟通。互联网似乎比以往任何媒介都具有优越性。在互联网成为这个时代主......一起来看看 《总开关》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换