FB AI distinguishes multiple speakers simultaneously

栏目: IT技术 · 发布时间: 5年前

内容简介:We’re introducing a new method to separate up to five voices speaking simultaneously on a single microphone. Our method surpasses previous state-of-the-art performance on several speech source separation benchmarks, including ones with challenging noise an

What the research is

We’re introducing a new method to separate up to five voices speaking simultaneously on a single microphone. Our method surpasses previous state-of-the-art performance on several speech source separation benchmarks, including ones with challenging noise and reverberations. Using the WSJ0-2mix and WSJ0-3mix data sets, along with newly created variations with four and five simultaneous speakers, our model achieved a scale-invariant SI-SNR (signal-to-noise ratio, a common measure of separation quality) improvement of more than 1.5 dB (decibels) over the current state-of-the-art models.

To build our model, we use a novel recurrent neural network architecture that works directly on the raw audio waveform. Previously best-available models use a mask and a decoder to sort each speaker’s voice. The performance of these kinds of models rapidly degrades when the number of speakers is high or unknown.

As with standard speech separation systems, our model requires knowledge of the total number of speakers in advance. But in order to handle challenges when the number of speakers is unknown, we built a novel system that automatically detects the number of speakers and selects the most relevant model.

How it works

The main goal of speech separation models is to estimate the input sources, given an input mixture of speech signals, and generate an output of isolated channels for each speaker.

Our model uses an encoder network that maps the input signal to a latent representation. We applied a voice separation network composed of several blocks, where the input is the latent representation and the output is an estimated signal for each speaker. Previous methods typically use a mask when performing separation, which is problematic when the mask is not defined and some signal information may be lost in the process.

We trained the model and directly optimized the SI-SNR using several loss functions via the permutation invariant training. We inserted a loss function after every separation block to further improve the optimization process. Finally, to ensure each speaker is consistently mapped to a particular output channel, we added a perceptual loss function using a pretrained speaker recognition model.

We also built a new system to handle separation of unknown numbers of multiple speakers. We did this by training different models for separating two, three, four, and five speakers. We fed the input mixture to the model designed to accommodate up to five simultaneous speakers so that it would detect the number of active (nonsilent) channels present. Then, we repeated the same process with a model trained for the number of active speakers and checked to see whether all output channels were active. We repeated this process until either all channels were activated or we found the model with the lowest number of target speakers.

Why it matters

The ability to separate a single voice from conversations across many people can improve and enhance communication across a wide range of applications that we use in our daily lives, like voice messaging, assistants, and video tools, as well as AR/VR innovations. It can also improve audio quality for people with hearing aids, so it’s easier to hear others clearly in crowded and noisy environments such as parties, restaurants, or large video calls.

Beyond its separating different voices, our novel system can also be applied to separate other types of speech signals from a mixture of sounds such as background noise. Our work can also be applied to music recordings, improving our previous work on separating different musical instruments from a single audio file. As a next step, we’ll work on improving the generative properties of the model until it achieves high performance in real-world conditions.

Read the full paper:

Voice separation with an unknown number of multiple speakers

Check out the audio samples here.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

精通Python设计模式

精通Python设计模式

[荷] Sakis Kasampalis / 夏永锋 / 人民邮电出版社 / 2016-7 / 45.00元

本书分三部分、共16章介绍一些常用的设计模式。第一部分介绍处理对象创建的设计模式,包括工厂模式、建造者模式、原型模式;第二部分介绍处理一个系统中不同实体(类、对象等)之间关系的设计模式,包括外观模式、享元模式等;第三部分介绍处理系统实体之间通信的设计模式,包括责任链模式、观察者模式等。一起来看看 《精通Python设计模式》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具