Hashmaps Benchmarks

栏目: IT技术 · 发布时间: 4年前

内容简介:I’ve spent a long time developing myThat’s why I have now spent considerable time to create a highly improved benchmarks, where I have tried to remedy, but I am still very pleased with the results.

Table of Contents

I’ve spent a long time developing my robin_hood::unordered_map , and after claiming that it is now the fastest hashmap I understandably got quite a few skeptic comments. Some of the comments were quite right, and my benchmarks were not as unbiased as they could be, I did not test as many unordered maps as I should have, my compiler options were not choosen well, and so on.

That’s why I have now spent considerable time to create a highly improved benchmarks, where I have tried to remedy

all most of the critique that I got. The results are not as flattering to my robin_hood::unordered_map

, but I am still very pleased with the results.

What is actually Benchmarked?

This benchmark has evalued 20 different unordered_map implementations, each with 5 different hashing implementations. So there are a total of 20*5 = 100 hashmap variants to benchmark. Each of this 100 hashmaps was evaluated in 10 different benchmarks, so in total 1000 benchmark evaluations. I ran each benchmark 9 times and show the median, to filter out any outliers. So in total I ran 9000 benchmarks, which took about 6 days on my Intel i7-8700 at 3200 MHz. To get highly accurate results, I’ve isolated a core to only benchmarking , and disabled all frequency scaling .

Hashmaps

  • Google’s Abseil ’s abseil::flat_hash_map , abseil::node_hash_map . They are brand new, and have just recently pushed the boundary on what’s possible to achieve for unordered_maps. It uses several interesting optimizations, described in CppCon 2017: Matt Kulukundis “Designing a Fast, Efficient, Cache-friendly Hash Table, Step by Step .
  • boost multiindex : boost::multi_index::hashed_unique . Boost.MultiIndex is a versatile container that is highly configurable, it’s main features is not speed but it’s versatility. It is not a straight forward std::unordered_map replacement, the implementation for the wrapper was thankfully provided by joaquintides .
  • Boost’s unordered map boost::unordered_map is very similar to std::unordered_map , just boosts (older) version before std::unordered_map was a thing. I’ve tested with boost version 1.65.1.
  • EASTL has eastl::hash_map . The Electronic Arts Standard Template Library, an STL implementation with emphasis on high performance. It seems to be a bit dated though.
  • Facebook’s folly : folly::F14ValueMap and folly::F14NodeMap . C++14 conform and high performance in mind. The maps are described in the F14 Hash Table document.
  • greg7mdp’s parallel hashmap : phmap::flat_hash_map and phmap::node_hash_map are closely based on Abseil’s map, but simpler to integrate since they are header only. phmap::parallel_flat_hash_map and phmap::parallel_node_hash_map use a novel improvement that makes the maps a tad slower but usable in parallel. Also, peak memory requirements are a bit lower. Read more in “ The Parallel Hashmap ”.
  • greg7mdp’s sparsepp : spp::sparse_hash_map tuned to be memory efficient.
  • ktprime’s HashMap : A rather unknown implementation emilib1::HashMap by /u/huangyuanbing . It might not be as stable and well tested as other implementations here, but the numbers look very promising.
  • martinus’s robin-hood-hashing : A single-file header-only implementation that contains robin_hood::unordered_flat_map and robin_hood::unordered_node_map . I am the author of the maps, so I might not be perfectly unbiased… The numbers won’t lie though, and I try to be as objective as possible.
  • Malte Skarupke’s Bytell Map After first claiming I Wrote The Fastest Hashtable and later A new fast hash table in response to Google’s new fast hash table , his maps ska::flat_hash_map and ska::bytell_hash_map are obvious choices for this benchmark.
  • std::unordered_map Of course, the standard implementation of std::unordered_map has to be included has well Since I am using g++ 8.2, this uses the libstdc++ implementation.
  • tessil’s maps : Tessil has done lots and lots of work on hashmaps, in all kinds of flavours. Here I am benchmarking tsl::hopscotch_map , tsl::robin_map , and tsl::sparse_map . They are all available on github .

Hashes

Some hashmap implementations come with their own hashing methods, each with different properties. In my benchmarks I have used either integral types like int or uint64_t , and std::string as the keys.

  • Abseil’s Hash absl:Hash : An extremely fast hash, that works very well in all situations I have tested.
  • FNV1a A very simple hash that is used by Microsoft in Visual Studio 2017. Interestingly, they even use this byte-wise hash for integral types. My benchmark has its own implementation, but in my experiments it has produced the same assembler code as the original Microsoft variant.
  • Folly’s Hash folly::hasher : Unfortunately I could not find any documentation. It seems to be well optimized and uses native crc instruction if available. Unfortunately the result is only a 32bit hash which can work badly for some hashmap variants.
  • libstdc++-v3 simply casts integral types to size_t and uses this as a hash function. It is obviously the fastest hash, but many hashmap implementations rely on a somewhat good avalanching hash quality so this seems to be a rather bad choice.
  • martinus’s robin-hood-hashing robin_hood::hash is based on abseil’s hash for integral types, with minor modifications.

How is benchmarked?

Build

  • I’ve used g++ 8.2.0 with -O3 -march=native :
    g++-8 (Ubuntu 8.2.0-1ubuntu2~18.04) 8.2.0
  • CMake build is done with Release mode
  • and I’ve set FOLLY_CXX_FLAGS to -march=native .
  • For the ktprime map benchmarks I had to add -fno-strict-aliasing .

System Configuration

  • All benchmarks were run on an Linux. uname -a output:
    Linux dualit 4.15.0-47-generic #50-Ubuntu SMP Wed Mar 13 10:44:52 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux
  • Processor Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, locked to 3200 MHz.
  • Isolated a core with it’s hyperthreading companion by editing /etc/default/grub and changing GRUB_CMDLINE_LINUX_DEFAULT so it looks like this:
    GRUB_CMDLINE_LINUX_DEFAULT="quiet splash isolcpus=5,11 rcu_nocbs=5,11"
  • Turbo boost and frequency scaling were disabled with the python tool perf with the command
    sudo python3 -m perf system tune

    This sets cores 5 and 11 to 3200 MHz, sets scaling governor to performance , disables Turbo Boost, sets irqbalances service to inactive, IRQ affinity to all CPUs except 5 and 11.

  • Each benchmarks is run in a separately started process.
  • Isolated cores are used with taskset -c 5,11
  • To get rid of any potential outliers and to average effects of ASLR , all benchmarks were run 9 times and I show only the median result.

Benchmarks

Enough talk, onwards to the benchmarks!


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

PHP和MySQL Web开发

PHP和MySQL Web开发

Luke Welling、Laura Thomson / 武欣、邵煜 / 机械工业出版社 / 2005-12 / 78.00元

本书将PHP开发与MySQL应用相结合,分别对PHP和MySQL做了深入浅出的分析,不仅介绍PHP和MySQL的一般概念,而且对PHP和MySQL的Web应用做了较全面的阐述,并包括几个经典且实用的例子。一起来看看 《PHP和MySQL Web开发》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具