内容简介:A darknet implementation of MobileNetv2-YOLOv3-SPP detection network*emmmm...这个懒得训练,mAP就凑合这样吧
待办
- 开放andooid示例项目(求大佬)
MobileNetv2-YOLOv3-SPP Darknet
A darknet implementation of MobileNetv2-YOLOv3-SPP detection network
Network | COCO mAP(0.5) | Resolution | FLOPS | Weight size |
---|---|---|---|---|
MobileNetV2-YOLOv3-SPP | 42.6 | 416 | 6.1BFlops | 17.6MB |
YOLOv4-Tiny | 40.2 | 416 | 6.9BFlops | 23.1MB |
*emmmm...这个懒得训练,mAP就凑合这样吧
Darknet Group convolution is not well supported on some GPUs such as NVIDIA PASCAL!!! The MobileNetV2-YOLOv3-SPP inference time is 100ms at GTX1080ti, but RTX2080 inference time is 5ms!!!
MobileNetV2-YOLOv3-Lite&Nano Darknet
Mobile inference frameworks benchmark (4*ARM_CPU)
Network | VOC mAP(0.5) | COCO mAP(0.5) | Resolution | Inference time (NCNN/Kirin 990) | Inference time (MNN arm82/Kirin 990) | FLOPS | Weight size |
---|---|---|---|---|---|---|---|
MobileNetV2-YOLOv3-Lite | 72.61 | 36.57 | 320 | 31.58 ms | 18 ms | 1.8BFlops | 8.0MB |
MobileNetV2-YOLOv3-Nano | 65.27 | 30.13 | 320 | 13 ms | 5 ms | 0.5BFlops | 3.0MB |
YOLOv3-Tiny-Prn | & | 33.1 | 416 | 36.6 ms | & ms | 3.5BFlops | 18.8MB |
YOLO-Nano | 69.1 | & | 416 | & ms | & ms | 4.57BFlops | 4.0MB |
- Support mobile inference frameworks such as NCNN&MNN
- The mnn benchmark only includes the forward inference time
- The ncnn benchmark is the forward inference time + post-processing time(NMS...) of the convolution feature map.
- Darknet Train Configuration: CUDA-version: 10010 (10020), cuDNN: 7.6.4,OpenCV version: 4 GPU:RTX2080ti
MobileNetV2-YOLOv3-Lite-COCO Test results
MobileNetV2-YOLO-Fastest
Network | Resolution | VOC mAP(0.5) | Inference time (DarkNet/i7-6700) | Inference time (NCNN/Kirin 990) | Inference time (MNN arm82/Kirin 990) | FLOPS | Weight size |
---|---|---|---|---|---|---|---|
MobileNetV2-YOLOv3-Fastest | 320 | 46.55 | 26 ms | 8.2 ms | 2.4 ms | 0.13BFlops | 700KB |
- 都2.4ms了,要啥mAP
:sunglasses: - Suitable for hardware with extremely tight computing resources
- The mnn benchmark only includes the forward inference time
- The ncnn benchmark is the forward inference time + post-processing time(NMS...) of the convolution feature map.
- This model is recommended to do some simple single object detection suitable for simple application scenarios
MobileNetV2-YOLO-Fastest Test results
500kb的yolo-Face-Detection
Network | Resolution | Inference time (NCNN/Kirin 990) | Inference time (MNN arm82/Kirin 990) | FLOPS | Weight size |
---|---|---|---|---|---|
UltraFace-version-RFB | 320x240 | &ms | 3.36ms | 0.1BFlops | 1.3MB |
UltraFace-version-Slim | 320x240 | &ms | 3.06ms | 0.1BFlops | 1.2MB |
yoloface-500k | 320x256 | 5.5ms | 2.4ms | 0.1BFlops | 0.5MB |
- 都500k了,要啥mAP
:sunglasses: - Inference time (DarkNet/i7-6700):13ms
- The mnn benchmark only includes the forward inference time
- The ncnn benchmark is the forward inference time + post-processing time(NMS...) of the convolution feature map.
Wider Face Val
Model | Easy Set | Medium Set | Hard Set |
---|---|---|---|
libfacedetection v1(caffe) | 0.65 | 0.5 | 0.233 |
libfacedetection v2(caffe) | 0.714 | 0.585 | 0.306 |
Retinaface-Mobilenet-0.25 (Mxnet) | 0.745 | 0.553 | 0.232 |
version-slim-320 | 0.77 | 0.671 | 0.395 |
version-RFB-320 | 0.787 | 0.698 | 0.438 |
yoloface-500k-320 | 0.728 | 0.682 | 0.431 |
YoloFace-500k Test results
Reference&Framework instructions&How to Train
- https://github.com/AlexeyAB/darknet
- You must use a pre-trained model to train your own data set. You can make a pre-trained model based on the weights of COCO training in this project to initialize the network parameters
- 交流qq群:1062122604
About model selection
- MobileNetV2-YOLOv3-SPP: Nvidia Jeston, Intel Movidius, TensorRT,NPU,OPENVINO...High-performance embedded side
- MobileNetV2-YOLOv3-Lite: High Performance ARM-CPU,Qualcomm Adreno GPU, ARM82...High-performance mobile
- MobileNetV2-YOLOv3-NANO: ARM-CPU...Computing resources are limited
- MobileNetV2-YOLOv3-Fastest: ....... Can you do personal face detection???It’s better than nothing
DarkNet2Caffe tutorial
Environmental requirements
- Python2.7
- python-opencv
- Caffe(add upsample layer https://github.com/dog-qiuqiu/caffe )
- You have to compile cpu version of caffe!!!
cd darknet2caffe/ python darknet2caffe.py MobileNetV2-YOLOv3-Nano-voc.cfg MobileNetV2-YOLOv3-Nano-voc.weights MobileNetV2-YOLOv3-Nano-voc.prototxt MobileNetV2-YOLOv3-Nano-voc.caffemodel cp MobileNetV2-YOLOv3-Nano-voc.prototxt sample cp MobileNetV2-YOLOv3-Nano-voc.caffemodel sample cd sample python detector.py
MNN conversion tutorial
- Benchmark: https://www.yuque.com/mnn/cn/tool_benchmark
- Convert darknet model to caffemodel through darknet2caffe
- Manually replace the upsample layer in prototxt with the interp layer
- Take the modification of MobileNetV2-YOLOv3-Nano-voc.prototxt as an example
#layer { # bottom: "layer71-route" # top: "layer72-upsample" # name: "layer72-upsample" # type: "Upsample" # upsample_param { # scale: 2 # } #} layer { bottom: "layer71-route" top: "layer72-upsample" name: "layer72-upsample" type: "Interp" interp_param { height:20 #upsample h size width:20 #upsample w size } }
- MNN conversion: https://www.yuque.com/mnn/cn/model_convert
NCNN conversion tutorial
- Benchmark: https://github.com/Tencent/ncnn/tree/master/benchmark
- NCNN supports direct conversion of darknet models
- darknet2ncnn: https://github.com/Tencent/ncnn/tree/master/tools/darknet
NCNN Android Sample
- 白嫖中....
Thanks
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
区块链与人工智能:数字经济新时代
高航、俞学劢、王毛路 / 电子工业出版社 / 2018-7-23 / 80
《区块链与人工智能》是畅销书《区块链与新经济:数字货币2.0时代》全新修订升级版。本书是市场上为数不多的系统阐述区块链、人工智能技术与产业的入门级系统教程。从比特币到各类数字货币(代币),从基础原理到应用探讨,全景式呈现区块链与人工智能的发展脉络,既有历史的厚重感也有科技的未来感。本书的另一个亮点是系统整理了区块链创业地图,是一本关于区块链创业、应用、媒体的学习指南,以太坊创始人Vitalik专门......一起来看看 《区块链与人工智能:数字经济新时代》 这本书的介绍吧!