[译]高性能缓存库Caffeine介绍

栏目: IT技术 · 发布时间: 4年前

内容简介:内容纲要本文我们将介绍首先在pom.xml文件中添加Caffeine相关依赖:

内容纲要

概览

本文我们将介绍 Caffeine -一个 Java 高性能缓存库。缓存和Map之间的一个根本区别是缓存会将储存的元素逐出。逐出策略决定了在什么时间应该删除哪些对象,逐出策略直接影响缓存的命中率,这是缓存库的关键特征。Caffeine使用 Window TinyLfu 逐出策略,该策略提供了接近最佳的命中率。

添加依赖

首先在pom.xml文件中添加Caffeine相关依赖:

<dependency>
    <groupId>com.github.ben-manes.caffeine</groupId>
    <artifactId>caffeine</artifactId>
    <version>2.5.5</version>
</dependency>

您可以在Maven Central上找到最新版本的Caffeine。

缓存填充

让我们集中讨论Caffeine的三种缓存填充策略:手动,同步加载和异步加载。

首先,让我们创建一个用于存储到缓存中的DataObject类:

class DataObject {
    private final String data;
 
    private static int objectCounter = 0;
    // standard constructors/getters
     
    public static DataObject get(String data) {
        objectCounter++;
        return new DataObject(data);
    }
}

手动填充

在这种策略中,我们手动将值插入缓存中,并在后面检索它们。

让我们初始化缓存:

Cache<String, DataObject> cache = Caffeine.newBuilder()
  .expireAfterWrite(1, TimeUnit.MINUTES)
  .maximumSize(100)
  .build();

现在,我们可以使用getIfPresent方法从缓存中获取值。如果缓存中不存在该值,则此方法将返回null:

String key = "A";
DataObject dataObject = cache.getIfPresent(key);
 
assertNull(dataObject);

我们可以使用put方法手动将值插入缓存:

cache.put(key, dataObject);
dataObject = cache.getIfPresent(key);
 
assertNotNull(dataObject);

我们还可以使用get方法获取值,该方法将Lambda函数和键作为参数。如果缓存中不存在此键,则此Lambda函数将用于提供返回值,并且该返回值将在计算后插入缓存中:

dataObject = cache
  .get(key, k -> DataObject.get("Data for A"));
 
assertNotNull(dataObject);
assertEquals("Data for A", dataObject.getData());

get方法以原子方式(atomically)执行计算。这意味着计算将只进行一次,即使多个线程同时请求该值。这就是为什么使用get比getIfPresent更好。

有时我们需要手动使某些缓存的值无效:

cache.invalidate(key);
dataObject = cache.getIfPresent(key);
 
assertNull(dataObject);

同步加载

这种加载缓存的方法具有一个函数,该函数用于初始化值,类似于手动策略的get方法。让我们看看如何使用它。

首先,我们需要初始化缓存:

LoadingCache<String, DataObject> cache = Caffeine.newBuilder()
  .maximumSize(100)
  .expireAfterWrite(1, TimeUnit.MINUTES)
  .build(k -> DataObject.get("Data for " + k));

现在,我们可以使用get方法检索值:

DataObject dataObject = cache.get(key);
 
assertNotNull(dataObject);
assertEquals("Data for " + key, dataObject.getData());

我们还可以使用getAll方法获得一组值:

Map<String, DataObject> dataObjectMap 
  = cache.getAll(Arrays.asList("A", "B", "C"));
 
assertEquals(3, dataObjectMap.size());

从传递给build方法的初始化函数中检索值。这样就可以通过缓存在来装饰访问值。

异步加载

该策略与先前的策略相同,但是异步执行操作,并返回保存实际值的CompletableFuture:

AsyncLoadingCache<String, DataObject> cache = Caffeine.newBuilder()
  .maximumSize(100)
  .expireAfterWrite(1, TimeUnit.MINUTES)
  .buildAsync(k -> DataObject.get("Data for " + k));

考虑到它们返回CompletableFuture的事实,我们可以以相同的方式使用get和getAll方法:

String key = "A";
 
cache.get(key).thenAccept(dataObject -> {
    assertNotNull(dataObject);
    assertEquals("Data for " + key, dataObject.getData());
});
 
cache.getAll(Arrays.asList("A", "B", "C"))
  .thenAccept(dataObjectMap -> assertEquals(3, dataObjectMap.size()));

CompletableFuture具有丰富而有用的API,您可以在 本文 中了解更多信息。

逐出元素

Caffeine具有三种元素逐出策略:基于容量,基于时间和基于引用。

基于容量的逐出

这种逐出发生在超过配置的缓存容量大小限制时。有两种获取容量当前占用量的方法,计算缓存中的对象数量或获取它们的权重。

让我们看看如何计算缓存中的对象。初始化高速缓存时,其大小等于零:

LoadingCache<String, DataObject> cache = Caffeine.newBuilder()
  .maximumSize(1)
  .build(k -> DataObject.get("Data for " + k));
 
assertEquals(0, cache.estimatedSize());

当我们添加一个值时,大小显然会增加:

cache.get("A");
 
assertEquals(1, cache.estimatedSize());

我们可以将第二个值添加到缓存中,从而导致删除第一个值:

cache.get("B");
cache.cleanUp();
 
assertEquals(1, cache.estimatedSize());

值得一提的是,在获取缓存大小之前,我们先调用cleanUp方法。这是因为缓存逐出是异步执行的,并且此方法有助于等待逐出操作的完成。

我们还可以传递一个 weigher 函数来指定缓存值的权重大小:

LoadingCache<String, DataObject> cache = Caffeine.newBuilder()
  .maximumWeight(10)
  .weigher((k,v) -> 5)
  .build(k -> DataObject.get("Data for " + k));
 
assertEquals(0, cache.estimatedSize());
 
cache.get("A");
assertEquals(1, cache.estimatedSize());
 
cache.get("B");
assertEquals(2, cache.estimatedSize());

当权重超过10时,将从缓存中删除这些值:

cache.get("C");
cache.cleanUp();
 
assertEquals(2, cache.estimatedSize());

基于时间的逐出

此逐出策略基于元素的到期时间,并具有三种类型:

  • Expire after access  — 自上次读取或写入发生以来,经过过期时间之后该元素到期。
  • Expire after write — 自上次写入以来,在经过过期时间之后该元素过期。
  • Custom policy  — 通过Expiry实现分别计算每个元素的到期时间。

让我们使用expireAfterAccess方法配置访问后过期策略:

LoadingCache<String, DataObject> cache = Caffeine.newBuilder()
  .expireAfterAccess(5, TimeUnit.MINUTES)
  .build(k -> DataObject.get("Data for " + k));

要配置写后过期策略,我们使用expireAfterWrite方法:

cache = Caffeine.newBuilder()
  .expireAfterWrite(10, TimeUnit.SECONDS)
  .weakKeys()
  .weakValues()
  .build(k -> DataObject.get("Data for " + k));

要初始化自定义策略,我们需要实现Expiry接口:

cache = Caffeine.newBuilder().expireAfter(new Expiry<String, DataObject>() {
    @Override
    public long expireAfterCreate(
      String key, DataObject value, long currentTime) {
        return value.getData().length() * 1000;
    }
    @Override
    public long expireAfterUpdate(
      String key, DataObject value, long currentTime, long currentDuration) {
        return currentDuration;
    }
    @Override
    public long expireAfterRead(
      String key, DataObject value, long currentTime, long currentDuration) {
        return currentDuration;
    }
}).build(k -> DataObject.get("Data for " + k));

基于引用的逐出

我们可以将缓存配置为允许垃圾回收缓存的键或值。为此,我们将为键和值配置WeakRefence的用法,并且我们只能为值的垃圾收集配置为SoftReference。

当对象没有任何强引用时,WeakRefence用法允许对对象进行垃圾回收。 SoftReference允许根据JVM的全局“最近最少使用”策略对对象进行垃圾收集。有关Java引用的更多详细信息,请参见 此处

我们应该使用Caffeine.weakKeys(),Caffeine.weakValues()和Caffeine.softValues()来启用每个选项:

LoadingCache<String, DataObject> cache = Caffeine.newBuilder()
  .expireAfterWrite(10, TimeUnit.SECONDS)
  .weakKeys()
  .weakValues()
  .build(k -> DataObject.get("Data for " + k));
 
cache = Caffeine.newBuilder()
  .expireAfterWrite(10, TimeUnit.SECONDS)
  .softValues()
  .build(k -> DataObject.get("Data for " + k));

刷新缓存

可以将缓存配置为在定义的时间段后自动刷新元素。让我们看看如何使用refreshAfterWrite方法执行此操作:

Caffeine.newBuilder()
  .refreshAfterWrite(1, TimeUnit.MINUTES)
  .build(k -> DataObject.get("Data for " + k));

在这里,我们应该了解expireAfter和refreshAfter之间的区别。前者当请求过期元素时,执行将阻塞,直到build()计算出新值为止。

但是后者将返回旧值并异步计算出新值并插入缓存中,此时被刷新的元素的过期时间将重新开始计时计算。

统计

Caffeine可以记录有关缓存使用情况的统计信息:

LoadingCache<String, DataObject> cache = Caffeine.newBuilder()
  .maximumSize(100)
  .recordStats()
  .build(k -> DataObject.get("Data for " + k));
cache.get("A");
cache.get("A");
 
assertEquals(1, cache.stats().hitCount());
assertEquals(1, cache.stats().missCount());

我们将recordStats传递给它,recordStats创建StatsCounter的实现。每次与统计相关的更改都将推送到给此对象。

总结

在本文中,我们熟悉了Java的Caffeine缓存库。我们了解了如何配置和填充缓存,以及如何根据需要选择适当的过期或刷新策略。

:star2::star2::star2::star2::star2::star2::star2::star2::star2::star2::star2::star2::star2::star2::star2::star2::star2::star2:

欢迎访问笔者博客: blog.dongxishaonian.tech

关注笔者公众号,推送各类原创/优质技术文章 :arrow_down:

[译]高性能缓存库Caffeine介绍

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Redis实战

Redis实战

Josiah L. Carlson / 黄健宏 / 人民邮电出版社 / 2015-10

【内容简介】 本书深入浅出地介绍了Redis的5种数据类型,并通过多个实用示例展示了Redis的用法。除此之外,书中还讲述了Redis的优化方法以及扩展方法,是一本对于学习和使用 Redis 来说不可多得的参考书籍。 本书一共由三个部分组成。第一部分对Redis进行了介 绍,说明了Redis的基本使用方法、它拥有的5种数据结构以及操作这5种数据结构的命令,并讲解了如何使用Redis去构......一起来看看 《Redis实战》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试