Speeding up function calls with just one line in Python

栏目: IT技术 · 发布时间: 4年前

内容简介:One line summary: UseIf we’re calling expensive functions in the program very frequently, It’s best to save the result of a function call and use it for future purposes rather than calling function every time. This will generally speed up the execution of

One line summary: Use lru_cache decorator

Caching

If we’re calling expensive functions in the program very frequently, It’s best to save the result of a function call and use it for future purposes rather than calling function every time. This will generally speed up the execution of the program.

The expensiveness of function can be in terms of computational (CPU usage) or latency (disk read, fetching a resource from the network).

The saving result of function calls is generally referred to as caching. The naive way to do caching is to store every function calls. But, this doesn’t scale very well with the number of parameters of function and range of each parameter.

So, we need a smart way to do caching with a fixed amount of memory. And, there are plenty of caching strategies available depending upon what type of information is available to us.

Caching is heavily used in plenty of areas from low-level (hardware/CPU) to high level (network/CDNs).

In most of the languages, We will choose caching strategies of our choice and implement them using a few data structures (hashmap, priority queue). Depending upon the language, It might take as little as few minutes to few hours to implement the generic solution of our need.

But, Python’s standard library functools already comes with one strategy of caching called LRU(Least Recently Used) . Thanks to decorators in python, It only takes one line to integrate into the existing codebase

Basic Recursive Implementation of Fibonacci numbers

import time as tt

def fib(n):
  if n <= 1:
    return n
  return fib(n-1) + fib(n-2)

t1 = tt.time()
fib(30)
print (f"Time taken: {tt.time() - t1}")

# Output : 
# Time taken: 0.3209421634674072

Speeding Up Recursive Implementation with LRU

import time as tt
import functools

# saving all function calls
@functools.lru_cache(maxsize=31)
def fib(n):
  if n <= 1:
    return n
  return fib(n-1) + fib(n-2)

t1 = tt.time()
fib(30)
print (f"Time taken: {tt.time() - t1}")
print (fib.cache_info())


# Output :
# Time taken: 1.7881393432617188e-05
# CacheInfo(hits=28, misses=31, maxsize=31, currsize=31)

In this example, we have saved all function calls. But, We know that Fibonacci can be implemented using DP .

Iterative implementation of Fibonacci

import time as tt

def fib_iterative(n):
  if n <= 1:
    return n
  f, s = 0, 1
  for i in range(n-1):
    t = f + s
    f, s = s, t
  return t

t1 = tt.time()
fib_iterative(30)
print (f"Time taken: {tt.time() - t1}")

# Output:
# Time taken: 5.0067901611328125e-06

Different Cache size

import time as tt
import functools

def lru_size(max_lru):
    @functools.lru_cache(maxsize=max_lru, typed=False)
    def fib_lru(n):
        if n <= 1:
            return n
        return fib_lru(n-1) + fib_lru(n-2)
    return fib_lru

for i in [1, 2, 5, 10, 31]:
    t1 = tt.time()
    fib = lru_size(i)
    fib(10)
    print (f"LRU size: {i} Time taken: {tt.time() - t1}")
    print (fib.cache_info())

# Output:
# LRU size: 1 Time taken: 0.6930997371673584
# CacheInfo(hits=0, misses=2692537, maxsize=1, currsize=1)
# LRU size: 2 Time taken: 0.012731075286865234
# CacheInfo(hits=8656, misses=41641, maxsize=2, currsize=2)
# LRU size: 5 Time taken: 5.817413330078125e-05
# CacheInfo(hits=28, misses=31, maxsize=5, currsize=5)
# LRU size: 10 Time taken: 3.9577484130859375e-05
# CacheInfo(hits=28, misses=31, maxsize=10, currsize=10)
# LRU size: 31 Time taken: 3.504753112792969e-05
# CacheInfo(hits=28, misses=31, maxsize=31, currsize=31)

As, we can see the optimal cache size of fib function is 5 . Increasing cache size will not result in much gain in terms of speedup.

Important Note

I strictly suggest to use lru decorator in only deterministic functions.

Deterministic Functions

In computer science, a deterministic algorithm is an algorithm which, given a particular input, will always produce the same output, with the underlying machine always passing through the same sequence of states. Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they can be run on real machines efficiently.
– Wikipedia

Because,

There are only two hard things in Computer Science: cache invalidation and naming things.
– Phil Karlton

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

推荐系统与深度学习

推荐系统与深度学习

黄昕、赵伟、王本友、吕慧伟、杨敏 / 清华大学出版社 / 2019-1-1 / 65.00元

本书的内容设置由浅入深,从传统的推荐算法过渡到近年兴起的深度学习技术。不管是初学者,还是有一定经验的从业人员,相信都能从本书的不同章节中有所收获。 区别于其他推荐算法书籍,本书引入了已被实践证明效果较好的深度学习推荐技术,包括Word2Vec、Wide & Deep、DeepFM、GAN 等技术应用,并给出了相关的实践代码;除了在算法层面讲解推荐系统的实现,还从工程层面详细阐述推荐系统如何搭建.一起来看看 《推荐系统与深度学习》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具