Computational Linear Algebra for Programmers (2017)

栏目: IT技术 · 发布时间: 5年前

内容简介:This course is focused on the question:This course was taught in theAccompanying the notebooks is a

Computational Linear Algebra for Coders

This course is focused on the question: How do we do matrix computations with acceptable speed and acceptable accuracy?

This course was taught in the University of San Francisco's Masters of Science in Analytics program, summer 2017 (for graduate students studying to become data scientists). The course is taught in Python with Jupyter Notebooks, using libraries such as Scikit-Learn and Numpy for most lessons, as well as Numba (a library that compiles Python to C for faster performance) and PyTorch (an alternative to Numpy for the GPU) in a few lessons.

Accompanying the notebooks is a playlist of lecture videos, available on YouTube . If you are ever confused by a lecture or it goes too quickly, check out the beginning of the next video, where I review concepts from the previous lecture, often explaining things from a new perspective or with different illustrations, and answer questions.

Getting Help

You can ask questions or share your thoughts and resources using the Computational Linear Algebra category on our fast.ai discussion forums .

Table of Contents

The following listing links to the notebooks in this repository, rendered through the nbviewer service. Topics Covered:

0. Course Logistics ( Video 1 )

1. Why are we here? ( Video 1 )

We start with a high level overview of some foundational concepts in numerical linear algebra.

2. Topic Modeling with NMF and SVD ( Video 2 and Video 3 )

We will use the newsgroups dataset to try to identify the topics of different posts. We use a term-document matrix that represents the frequency of the vocabulary in the documents. We factor it using NMF, and then with SVD.

3. Background Removal with Robust PCA ( Video 3 , Video 4 , and Video 5 )

Another application of SVD is to identify the people and remove the background of a surveillance video. We will cover robust PCA, which uses randomized SVD. And Randomized SVD uses the LU factorization.

4. Compressed Sensing with Robust Regression ( Video 6 and Video 7 )

Compressed sensing is critical to allowing CT scans with lower radiation-- the image can be reconstructed with less data. Here we will learn the technique and apply it to CT images.

5. Predicting Health Outcomes with Linear Regressions ( Video 8 )

6. How to Implement Linear Regression ( Video 8 )

7. PageRank with Eigen Decompositions ( Video 9 and Video 10 )

We have applied SVD to topic modeling, background removal, and linear regression. SVD is intimately connected to the eigen decomposition, so we will now learn how to calculate eigenvalues for a large matrix. We will use DBpedia data, a large dataset of Wikipedia links, because here the principal eigenvector gives the relative importance of different Wikipedia pages (this is the basic idea of Google's PageRank algorithm). We will look at 3 different methods for calculating eigenvectors, of increasing complexity (and increasing usefulness!).

8. Implementing QR Factorization ( Video 10 )

Why is this course taught in such a weird order?

This course is structured with a top-down teaching method, which is different from how most math courses operate. Typically, in a bottom-up approach, you first learn all the separate components you will be using, and then you gradually build them up into more complex structures. The problems with this are that students often lose motivation, don't have a sense of the "big picture", and don't know what they'll need.

Harvard Professor David Perkins has a book, Making Learning Whole in which he uses baseball as an analogy. We don't require kids to memorize all the rules of baseball and understand all the technical details before we let them play the game. Rather, they start playing with a just general sense of it, and then gradually learn more rules/details as time goes on.

If you took the fast.ai deep learning course, that is what we used. You can hear more about my teaching philosophy in this blog post or this talk I gave at the San Francisco Machine Learning meetup .

All that to say, don't worry if you don't understand everything at first! You're not supposed to. We will start using some "black boxes" or matrix decompositions that haven't yet been explained, and then we'll dig into the lower level details later.

To start, focus on what things DO, not what they ARE.


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

了不起的Node.js

了不起的Node.js

劳奇 (Guillermo Rauch) / 赵静 / 电子工业出版社 / 2014-1 / 79.00元

本书是一本经典的 Learning by Doing的书籍。它由 Node社区著名的 Socket.IO作者—— Guillermo Rauch,通过大量的实践案例撰写,并由 Node社区非常活跃的开发者—— Goddy Zhao翻译而成。 本书内容主要由对五大部分的介绍组成: Node核心设计理念、 Node核心模块 API、Web开发、数据库以及测试。从前到后、由表及里地对使用 Node......一起来看看 《了不起的Node.js》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具