Mining Order From Chaos: the Ingenious and Creative Fusion of NLP & Graph Theory

栏目: IT技术 · 发布时间: 4年前

A knowledge (semantic) graph is, daresay, one of the most fascinating concepts in data science. The applications, extensions, and potential of knowledge graphs to mine order from the chaos of unstructured text is truly mind-blowing.

The graph consists of nodes and edges, where a node represents an entity and an edge represents a relationship. No entity in a graph can be repeated twice, and when there are enough entities in a graph, the connections between each can reveal worlds of information.

Just with a few entities, interesting relationships begin to emerge. As a general rule, entities are nouns and relationships are verbs; for instance, “the USA is a member of NATO” would correspond to a graph relationship “[entity USA] to [entity NATO] with [relationship member of]”. Just using text from three to four sentences of information, one could construct a rudimentary knowledge graph:

Imagine the sheer amount of knowledge possessed in a complete Wikipedia article, or even an entire book! One could perform detailed analyses with this abundance of data; for example, identifying the most important entities or what the most common action or relationship an entity is on the receiving end of. Unfortunately, while building knowledge graphs is simple for humans, it is not scalable. We can build simple rule-based automated graph-builders.

To demonstrate the automation of knowledge-graph building, consider an expert of a biography of the great computer scientist and founder of artificial intelligence, Alan Turing. Since we’ve established that entities are nouns and verbs are relationships, let us first split the text into chunks, where each contains a relationship between two objects.

A simple method to do this is to separate by sentence, but a more rigorous method would be to separate by clause, since there may be many clauses and hence relationships in a single sentence (“she walked her dog to the park, then she bought food”).

Identifying the objects involved — entity extraction — is a more difficult task. Consider “Turing test”: this is an example of a nested entity, or an entity within the name of another entity. While POS (part of speech) tagging is sufficient for single-word nouns, one will need to use dependency parsing for multi-word nouns.

Dependency parsing is the task of recognizing a sentence and assigning a syntax-based structure to it. Because dependency trees are based on grammar and not word-by-word, it doesn’t care how many words an object consists of, as long as it is enclosed by other structures like verbs (‘proposed’) or transitioning phrases (‘as a…’). It is also used to find the verb that relates the two objects, systematically following what it believes is the syntax of the sentence and the rules of grammar. One can also use similar methods to link pronouns (‘he’, ‘she’, ‘they’) to the person it refers to (pronoun resolution).

It is worth mentioning that one may also benefit from building a knowledge graph by adding synonyms; tutorials will often show examples with the same word repeated many times for simplicity, but to humans using the same word repeatedly is so looked down-upon that writers actively find synonyms (words that mean the same thing as another word). One way to do this is with Hearst patterns, named after Marti Hearst, a computational linguistics researcher and professor at UC Berkeley. In her extensive research, she discovered a set of reoccurring patterns that can be reliably used to extract information.


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

蚂蚁金服

蚂蚁金服

由曦 / 中信出版集团股份有限公司 / 2017-4-7 / CNY 59.00

在中国,支付宝(其母公司为蚂蚁金服)是一个家喻户晓的品牌。我们在用手机扫码支付,或者用余额宝理财的时候,一定会和支付宝发生关系。但是很多人不知道,支付宝的母公司叫作“蚂蚁金服”。蚂蚁金服不仅有支付宝,还有余额宝、网商银行、芝麻信用等一系列产品和服务。成立于2004年、起始于支付宝的蚂蚁金服集团,如今已经是全球估值最高的科技金融企业。然而,在成立之初,它只是淘宝网的结算部门,员工只有区区几人,记账用......一起来看看 《蚂蚁金服》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

在线进制转换器
在线进制转换器

各进制数互转换器

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具