Confusion Matrix is not so confusing

栏目: IT技术 · 发布时间: 4年前

Confusion Matrix is not so confusing

Confusion Matrix

Confusion Matrixis a matrix that illustrates the performance of a classification model when exposed to unseen data. This matrix helps us to identify how the model is performing on test set. From this matrix, many other scores are calculated such as Accuracy, Recall, Precision, F1-score, etc. It is important one should know where to use which type of score as it depends on the application.

There are two classes: Class 1 and Class 2

Class 1:Positive

Class 2: Negative

Positive: Observation is True (eg. Picture is a dog)

Negative: Observation is False (eg. Picture is not a dog)

T.P.(True Positive): Truth and Prediction both are Positive

T.N.(True Negative): Truth and Prediction both are Negative

F.P.(False Positive): Truth is Negative but Prediction is Positive

F.N.(False Negative): Truth is Positive but Prediction is Negative

Accuracy:

Accuracy is the ratio of sum of True Positive(T.P.) and True Negative(T.N.) to the sum of the matrix elements.

Confusion Matrix is not so confusing

Precision:

Precision is defined as the ratio of True Positive(T.P) to the sum of True Positive(T.P) and False Positive(F.P)

Confusion Matrix is not so confusing

Recall:

Recall is defined as the ratio of True Positive(T.P) to the sum of True Positive(T.P) and False Negative(F.N)

Confusion Matrix is not so confusing

High recall, low precision:This means that most of the positive examples are correctly recognized (low FN) but there are a lot of false positives.

Low recall, high precision:This shows that we miss a lot of positive examples (high FN) but those we predict as positive are indeed positive (low FP)

F1-score:

Since we have two measures (Precision and Recall) it helps to have a measurement that represents both of them. We calculate an F-measure which uses Harmonic Mean in place of Arithmetic Mean as it punishes the extreme values more.

The F-Measure will always be nearer to the smaller value of Precision or Recall.

Confusion Matrix is not so confusing

Exercise

Confusion Matrix is not so confusing

Accuracy

Accuracy = (TP + TN) / (TP + TN + FP + FN) = (100 + 50) /(100 + 5 + 10 + 50) = 0.90

Precision

Precision tells us about when it predicts yes, how often is it correct.

Precision = TP / (TP + FP)=100/ (100+10) = 0.91

Recall

Recall gives us an idea about when it’s actually yes, how often does it predict yes.

Recall = TP / (TP + FN) = 100 / (100 + 5) = 0.95

F-score

F1-score = (2 * Recall * Precision) / (Recall + Presision) = (2 * 0.95 * 0.91) / (0.91 + 0.95) = 0.9
Got any questions?

GitHub

LinkedIn

Email: amarmandal2153@gmail.com

Thank youuuu…


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

琢石成器

琢石成器

罗云彬 / 电子工业出版社 / 2009-6 / 89.00元

Windows环境下32位汇编语言是一种全新的编程语言。它使用与C++语言相同的API接口,不仅可以开发出大型的软件,而且是了解操作系统运行细节的最佳方式。 本书从编写应用程序的角度,从“Hello,World!”这个简单的例子开始到编写多线程、注册表和网络通信等复杂的程序,通过70多个实例逐步深入Win32汇编语言编程的方方面面。 本书作者罗云彬拥有十余年汇编语言编程经验,是汇编编程......一起来看看 《琢石成器》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具