内容简介:Alive2 consists of several libraries and tools for analysis and verification of LLVM code and transformations. Alive2 includes the following libraries:Included tools:Alive2 does not support inter-procedural transformations. Alive2 may crash or produce spur
Alive2
Alive2 consists of several libraries and tools for analysis and verification of LLVM code and transformations. Alive2 includes the following libraries:
- Alive2 IR
- Symbolic executor
- LLVM -> Alive2 IR converter
- Refinement check (aka optimization verifier)
- SMT abstraction layer
Included tools:
opt alive-tv
WARNING
Alive2 does not support inter-procedural transformations. Alive2 may crash or produce spurious counterexamples if run with such passes.
Prerequisites
To build Alive2 you need recent versions of:
- cmake
- gcc/clang
- re2c
- Z3
- LLVM (optional)
Building
mkdir build cd build cmake -GNinja -DCMAKE_BUILD_TYPE=Release .. ninja
If CMake cannot find the Z3 include directory (or finds the wrong one) pass
the -DZ3_INCLUDE_DIR=/path/to/z3/include
and -DZ3_LIBRARIES=/path/to/z3/lib/libz3.so
arguments to CMake.
Building and Running Translation Validation
Alive2's opt
and clang
translation validation requires a build of LLVM with
RTTI and exceptions turned on.
LLVM can be built in the following way:
cd llvm mkdir build cmake -GNinja -DLLVM_ENABLE_RTTI=ON -DLLVM_ENABLE_EH=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLVM_TARGETS_TO_BUILD=X86 -DLLVM_ENABLE_ASSERTIONS=ON -DLLVM_ENABLE_PROJECTS="llvm;clang" ../llvm
Alive2 should then be configured as follows:
cmake -GNinja -DLLVM_DIR=~/llvm/build/lib/cmake/llvm -DBUILD_TV=1 -DCMAKE_BUILD_TYPE=Release ..
If you want to use Alive2 as a clang plugin, add -DCLANG_PLUGIN=1
to the
cmake command.
Translation validation of one or more LLVM passes transforming an IR file on Linux:
~/llvm/build/bin/opt -load /home/user/alive2/build/tv/tv.so -tv -instcombine -tv -o /dev/null foo.ll
On a Mac:
~/llvm/build/bin/opt -load /home/user/alive2/build/tv/tv.dylib -tv -instcombine -tv -o /dev/null foo.ll
You can run any pass or combination of passes, but on the command line
they must be placed in between the two invocations of the Alive2 -tv
pass.
Translation validation of a single LLVM unit test, using lit:
~/llvm/build/bin/llvm-lit -vv -Dopt=/home/user/alive2/scripts/opt-alive.sh ~/llvm/llvm/test/Transforms/InstCombine/canonicalize-constant-low-bit-mask-and-icmp-sge-to-icmp-sle.ll
The output should be:
-- Testing: 1 tests, 1 threads -- PASS: LLVM :: Transforms/InstCombine/canonicalize-constant-low-bit-mask-and-icmp-sge-to-icmp-sle.ll (1 of 1) Testing Time: 0.11s Expected Passes : 1
Translation validation of the LLVM unit tests:
~/llvm/build/bin/llvm-lit -vv -Dopt=/home/user/alive2/scripts/opt-alive.sh ~/llvm/llvm/test/Transforms
Running Alive2 as a Clang plugin:
$ clang -O3 <src.c> -S -emit-llvm \ -fpass-plugin=$HOME/alive2/build/tv/tv.so -fexperimental-new-pass-manager \ -Xclang -load -Xclang $HOME/alive2/build/tv/tv.so
Running the Standalone Translation Validation Tool (alive-tv)
This tool has two modes.
In the first mode, specify a source (original) and target (optimized)
IR file. For example, let's prove that removing nsw
is correct
for addition:
$ ./alive-tv src.ll tgt.ll ---------------------------------------- define i32 @f(i32 %a, i32 %b) { %add = add nsw i32 %b, %a ret i32 %add } => define i32 @f(i32 %a, i32 %b) { %add = add i32 %b, %a ret i32 %add } Transformation seems to be correct!
Flipping the inputs yields a counterexample, since it's not correct, in general,
to add nsw
.
If you are not interested in counterexamples using undef
, you can use the
command-line argument -disable-undef-input
.
In the second mode, specify a single unoptimized IR file. alive-tv will optimize it using an optimization pipeline similar to -O2, but without any interprocedural passes, and then attempt to validate the translation.
For example, as of February 6 2020, the release/10.x
branch contains
an optimizer bug that can be triggered as follows:
$ cat foo.ll define i3 @foo(i3) { %x1 = sub i3 0, %0 %x2 = icmp ne i3 %0, 0 %x3 = zext i1 %x2 to i3 %x4 = lshr i3 %x1, %x3 %x5 = lshr i3 %x4, %x3 ret i3 %x5 } $ ./alive-tv foo.ll ---------------------------------------- define i3 @foo(i3 %0) { %x1 = sub i3 0, %0 %x2 = icmp ne i3 %0, 0 %x3 = zext i1 %x2 to i3 %x4 = lshr i3 %x1, %x3 %x5 = lshr i3 %x4, %x3 ret i3 %x5 } => define i3 @foo(i3 %0) { %x1 = sub i3 0, %0 ret i3 %x1 } Transformation doesn't verify! ERROR: Value mismatch Example: i3 %0 = #x5 (5, -3) Source: i3 %x1 = #x3 (3) i1 %x2 = #x1 (1) i3 %x3 = #x1 (1) i3 %x4 = #x1 (1) i3 %x5 = #x0 (0) Target: i3 %x1 = #x3 (3) Source value: #x0 (0) Target value: #x3 (3) Summary: 0 correct transformations 1 incorrect transformations 0 errors
LLVM Bugs Found by Alive2
BugList.md shows the list of LLVM bugs found by Alive2.
以上所述就是小编给大家介绍的《Alive2: Automatic verification of LLVM optimizations》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
像计算机科学家一样思考Python (第2版)
[美] 艾伦 B. 唐尼 / 赵普明 / 人民邮电出版社 / 2016-7 / 49.00
本书以培养读者以计算机科学家一样的思维方式来理解Python语言编程。贯穿全书的主体是如何思考、设计、开发的方法,而具体的编程语言,只是提供了一个具体场景方便介绍的媒介。 全书共21章,详细介绍Python语言编程的方方面面。本书从基本的编程概念开始讲起,包括语言的语法和语义,而且每个编程概念都有清晰的定义,引领读者循序渐进地学习变量、表达式、语句、函数和数据结构。书中还探讨了如何处理文件和......一起来看看 《像计算机科学家一样思考Python (第2版)》 这本书的介绍吧!