内容简介:At Build 2020 Microsoft announcedThis guide will walk early adopters through the steps on turning their Windows 10 devices into a CUDA development workstation with Ubuntu on WSL.For our purposes we will be setting up Jupyter Notebook in Docker with CUDA on
At Build 2020 Microsoft announced support for GPU compute on Windows Subsystem for Linux 2 . Ubuntu is the leading Linux distribution for WSL and a sponsor of WSLConf . Canonical, the publisher of Ubuntu, provides enterprise support for Ubuntu on WSL throughUbuntu Advantage.
This guide will walk early adopters through the steps on turning their Windows 10 devices into a CUDA development workstation with Ubuntu on WSL.
For our purposes we will be setting up Jupyter Notebook in Docker with CUDA on WSL. These instructions can be adapted to set up other CUDA GPU compute workloads on WSL.
Install Windows 10 Insiders Dev Channel
To begin, we need the latest Windows 10 Insider build released today, June 17, 2020. You will need to register as a Windows Insider if you have not already, enroll your device in the Dev Channel (previously known as the ‘Fast Ring’), and then upgrade to Windows 10 build number 20150 or above.
Consult the Windows Insider documentation for more information on registering as an Insider, enrolling your device, and upgrading your machine to the Dev Channel.
Enable WSL 2
In future updates to Windows you will simply need to use the following to enable WSL:
wsl --install
For now, open PowerShell as Administrator.
First enable WSL 1:
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
Then enable WSL 2:
dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
Restart Windows 10:
Restart-Computer
This step will become redundant in the future after WSL 2 becomes the default, but for now return to PowerShell and make WSL 2 your default before installing Ubuntu:
wsl.exe --set-default-version 2
To read more about Ubuntu on WSL, visitubuntu.com/wsl. For a more detailed look at enabling WSL on Windows, check out ourtutorial. To convert existing WSL 1 installs to WSL 2, see my blog on the general availability of WSL 2 .
Install Ubuntu on WSL
Install Ubuntu from the Microsoft Store :
For other ways to install Ubuntu on WSL, see ourWSL wiki.
Install Windows Terminal
Optionally, you may install the new Windows Terminal from the Microsoft Store . It is has many features, such as GPU acceleration and customizability, that improves the Ubuntu experience on WSL over the traditional Windows console.
Windows Terminal can also be installed from the project’s GitHub page .
Setup Ubuntu on WSL
Open Ubuntu from the Windows Start Menu and configure your WSL user. This user is separate from your Windows user:
If you downloaded Windows Terminal you can then close the old console and re-open Ubuntu from the drop-down options in the new Terminal:
Now check to make sure you are running the correct WSL 2 Linux kernel.
In Ubuntu:
uname -r
You will need kernel 4.19.121 or higher. If you do not have kernel 4.19.121, first try:
wsl.exe --update
If that does not work, make sure you have ‘Receive updates for other Microsoft products when you update Windows’ checked:
And then re-run Windows updates:
Install Nvidia Drivers on Windows 10
Next, download the appropriate driver for your GeForce or Quadro Nvidia card.
In the next few months, the NVIDIA driver will be distributed via Windows Update, which will manually downloading and installing the driver unnecessary.
You will need to join the Nvidia Developer Program for early access to the driver for now. You can read more about CUDA on WSL on the Nvidia Developer blog .
Install Docker in WSL
sudo apt -y install docker.io
Install Nvidia Container Toolkit
Set the distribution variable, import the Nvidia repository GPG key, and then add the Nvidia repositories to the Ubuntu apt package manager:
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list curl -s -L https://nvidia.github.io/libnvidia-container/experimental/$distribution/libnvidia-container-experimental.list | sudo tee /etc/apt/sources.list.d/libnvidia-container-experimental.list
Refresh the Ubuntu apt repositories and then install the Nvidia runtime:
sudo apt update && sudo apt install -y nvidia-docker2
Close all open terminals of Ubuntu, open a PowerShell terminal, and manually shutdown Ubuntu:
wsl.exe --shutdown Ubuntu
Test GPU Compute
Open a new Ubuntu terminal and run:
docker run --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark
If everything is configured correctly, the output should resemble:
Start A TensorFlow Container
Open a new Ubuntu terminal and run:
docker run -u $(id -u):$(id -g) -it --gpus all -p 8888:8888 tensorflow/tensorflow:latest-gpu-py3-jupyter
Open a second Ubuntu terminal, type wslview, copy and paste the notebook URL, but then edit the URL from 127.0.0.1 to localhost:
wslview http://localhost:8888/?token=a83a1ad288a7bf1bd1deb694c8a7f19223c8d0baa7d5fb3c
Your default browser on Windows will launch with a GPU-accelerated Jupyter notebook:
You are now all set to begin using TensorFlow with CUDA on Ubuntu WSL.
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Rails Cookbook
奥西尼 / 江苏东南大学 / 2007-6 / 68.00元
Rails是业界领先的新一代Web 2.0应用程序开发框架,而这本《Rails Cookbook》里充满了为了让你成为Rails开发专家而准备的各种解决方案。讨论范围覆盖了从基本概念,如安装Rails及设置开发环境,到最新的各种技巧,如开发符合REST协议规范的Web服务等。 Rails可提供更轻量级的代码、更丰富的功能和更快捷的量身定制过程,由此带来了一场Web开发革命。《Rails Co......一起来看看 《Rails Cookbook》 这本书的介绍吧!