An introduction to Variational Auto Encoders (VAEs)

栏目: IT技术 · 发布时间: 5年前

An introduction to Variational Auto Encoders (VAEs)

Understanding Variational Autoencoders (VAEs) from theory to practice using PyTorch

An introduction to Variational Auto Encoders (VAEs)

Art work from https://joanielemercier.com/ (Eyjafjallajökull, NY, May 2010 — commissioned by onedotzero)

VAE are latent variable models [1,2]. Such models rely on the idea that the data generated by a model can be parametrized by some variables that will generate some specific characteristics of a given data point. These variables are called latent variables.

One of the key ideas behind VAE is that instead of trying to construct a latent space (space of latent variables) explicitly and to sample from it in order to find samples that could actually generate proper outputs (as close as possible to our distribution), we construct an Encoder-Decoder like network which is split in two parts:

  • The encoder learns to generate a distribution depending on input samples X from which we can sample a latent variable that is highly likely to generate X samples. In other words we learn a set of parameters θ1 that generate a distribution Q(X,θ1) from which we can sample a latent variable z maximizing P(X|z).
  • The decoder part learns to generate an output which belongs to the real data distribution given a latent variable z as an input. In other words, we learn a set of parameters θ2 that generates a function f(z,θ2) that maps the latent distribution that we learned to the real data distribution of the dataset.

An introduction to Variational Auto Encoders (VAEs)

Variational Auto Encoder global architecture

In order to understand the mathematics behind Variational Auto Encoders, we will go through the theory and see why these models works better than older approaches.

This article will cover the following

  • How to define the construct the latent space
  • How to generate data efficiently from latent space sampling.
  • The final architecture of VAEs
  • Some experiments showing interesting properties of VAEs

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法设计与应用

算法设计与应用

迈克尔 T. 古德里奇(Michael T. Goodrich)、罗伯特·塔马契亚(Roberto Tamas / 乔海燕、李悫炜、王烁程 / 机械工业出版社 / 2017-11-20 / CNY 139.00

本书全面系统地介绍算法设计和算法应用的各个领域,内容涵盖经典数据结构、经典算法、算法分析方法、算法设计方法以及算法在各个领域的应用,还包含一些高级主题。本书采用应用驱动的方法引入各章内容,内容编排清晰合理,讲解由浅入深。此外,各章都附有巩固练习、创新练习和应用练习三种类型的题目,为读者理解和掌握算法设计和应用提供了很好的素材。 本书可作为高等院校计算机及相关专业“数据结构和算法”课程的本科生......一起来看看 《算法设计与应用》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具