An introduction to Variational Auto Encoders (VAEs)
Understanding Variational Autoencoders (VAEs) from theory to practice using PyTorch
Jun 17 ·10min read
VAE are latent variable models [1,2]. Such models rely on the idea that the data generated by a model can be parametrized by some variables that will generate some specific characteristics of a given data point. These variables are called latent variables.
One of the key ideas behind VAE is that instead of trying to construct a latent space (space of latent variables) explicitly and to sample from it in order to find samples that could actually generate proper outputs (as close as possible to our distribution), we construct an Encoder-Decoder like network which is split in two parts:
- The encoder learns to generate a distribution depending on input samples X from which we can sample a latent variable that is highly likely to generate X samples. In other words we learn a set of parameters θ1 that generate a distribution Q(X,θ1) from which we can sample a latent variable z maximizing P(X|z).
- The decoder part learns to generate an output which belongs to the real data distribution given a latent variable z as an input. In other words, we learn a set of parameters θ2 that generates a function f(z,θ2) that maps the latent distribution that we learned to the real data distribution of the dataset.
In order to understand the mathematics behind Variational Auto Encoders, we will go through the theory and see why these models works better than older approaches.
This article will cover the following
- How to define the construct the latent space
- How to generate data efficiently from latent space sampling.
- The final architecture of VAEs
- Some experiments showing interesting properties of VAEs
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
大数据架构商业之路
黄申 / 机械工业出版社 / 2016-5-1 / 69.00元
目前大数据技术已经日趋成熟,但是业界发现与大数据相关的产品设计和研发仍然非常困难,技术、产品和商业的结合度还远远不够。这主要是因为大数据涉及范围广、技术含量高、更新换代快,门槛也比其他大多数IT行业更高。人们要么使用昂贵的商业解决方案,要么花费巨大的精力摸索。本书通过一个虚拟的互联网O2O创业故事,来逐步展开介绍创业各个阶段可能遇到的大数据课题、业务需求,以及相对应的技术方案,甚至是实践解析;让读......一起来看看 《大数据架构商业之路》 这本书的介绍吧!
JS 压缩/解压工具
在线压缩/解压 JS 代码
Base64 编码/解码
Base64 编码/解码