字符串匹配算法:Sunday算法

栏目: IT技术 · 发布时间: 4年前

内容简介:我们第一次接触字符串匹配,想到的肯定是直接用2个循环来遍历,这样代码虽然简单,但时间复杂度却是KMP算法很多人看了一遍遍以后,对(切到网页):马冬梅

背景

我们第一次接触字符串匹配,想到的肯定是直接用2个循环来遍历,这样代码虽然简单,但时间复杂度却是 \(Ω(m*n)\) ,也就是达到了字符串匹配效率的下限。于是后来人经过研究,构造出了著名的KMP算法(Knuth-Morris-Pratt算法),让我们的时间复杂度降低到了 \(O(m+n)\) ,但现代文字处理器中,却很少使用KMP算法来做字符串匹配,因为还是太慢了。现在主流的算法是BM算法(Boyer-Moore算法),成功让平均时间复杂度降低到了 \(O(m/n)\) ,而Sunday算法,则是对BM算法的进一步小幅优化。

KMP算法很多人看了一遍遍以后,对 next[n] 数组的理解还是有点困难(包括笔者),写代码的时候总是容易变成这种情况(/捂脸.jpg):

(切到网页):马冬梅

(切到编译器):马什么梅

(切到网页):马冬梅

(切到编译器):马冬什么

(切到网页):马冬梅

(切到编译器):什么冬梅

而Sunday算法,理解起来则是非常容易,同时极低的时间复杂度,让Sunday算法成为了我目前最常使用的字符串匹配算法

Sunday 算法是 Daniel M.Sunday 于 1990 年提出的字符串模式匹配。其效率在匹配随机的字符串时比其他匹配算法还要更快。Sunday 算法的实现可比 KMP,BM 的实现容易太多。

平均性能的时间复杂度为 \(O(n)\)

最差情况的时间复杂度为

\(O(n * m)\)

算法过程

Sunday算法和BM算法稍有不同的是,Sunday算法是从前往后匹配,在匹配失败时关注的是主串中参加匹配的最末位字符的下一位字符。

  • 如果该字符没有在模式串中出现则直接跳过,即移动位数 = 模式串长度 + 1;
  • 否则,其移动位数 = 模式串长度 - 该字符最右出现的位置(以0开始) = 模式串中该字符最右出现的位置到尾部的距离 + 1。

现在举个例子讲解Sunday算法

假定主串为 "HERE IS A SIMPLE EXAMPLE",模式串为 "EXAMPLE"。

(1)

字符串匹配算法:Sunday算法

从头部开始比较,发现不匹配。则 Sunday 算法要求如下:找到主串中位于模式串后面的第一个字符,即红色箭头所指的 "空格",再在模式串中从后往前找 "空格",没有找到,则直接把模式串移到 "空格" 的后面。

(2)

字符串匹配算法:Sunday算法

依旧从头部开始比较,发现不匹配。找到主串中位于模式串后面的第一个字符 L,模式串中存在 L,则移动模式串使两个 L 对齐。

(3)

字符串匹配算法:Sunday算法

找到匹配。

完整代码

#include <iostream>
#include <string>

#define MAX_CHAR 256
#define MAX_LENGTH 1000

using namespace std;

void GetNext(string & p, int & m, int next[])
{
	for (int i = 0; i < MAX_CHAR; i++)
		next[i] = -1;
	for (int i = 0; i < m; i++)
		next[p[i]] = i;
}

void Sunday(string & s, int & n, string & p, int & m)
{
	int next[MAX_CHAR];
	GetNext(p, m, next);

	int j;  // s 的下标
	int k;  // p 的下标
	int i = 0;
	bool is_find = false;
	while (i <= n - m)
	{
		j = i;
		k = 0;
		while (j < n && k < m && s[j] == p[k])
			j++, k++;

		if (k == m)
		{
			cout << "在主串下标 " << i << " 处找到匹配\n";
			is_find = true;
		}

		if (i + m < n)
			i += (m - next[s[i + m]]);
		else
			break;
	}

	if (!is_find)
		cout << "未找到匹配\n";
}

int main()
{
	string s, p;
	int n, m;

	while (cin >> s >> p)
	{
		n = s.size();
		m = p.size();
		Sunday(s, n, p, m);
		cout << endl;
	}

	return 0;
}

数据测试如下:

here#is#a#example
example
在主串下标 10 处找到匹配

aaa
a
在主串下标 0 处找到匹配
在主串下标 1 处找到匹配
在主串下标 2 处找到匹配

aaa
b
未找到匹配

附小吴师兄的动画讲解链接

Sunday算法的缺点

看上去简单高效非常美好的Sunday算法,也有一些缺点。因为Sunday算法的核心依赖于move数组,而move数组的值则取决于模式串,那么就可能存在模式串构造出很差的move数组。例如下面一个例子

主串:baaaabaaaabaaaabaaaa

模式串:aaaaa

这个模式串使得move[a]的值为1,即每次匹配失败时,只让模式串向后移动一位再进行匹配。这样就让Sunday算法的时间复杂度飙升到了 O(m*n) ,也就是字符串匹配的最坏情况,在这种情况下效率就明显低于KMP等算法了 例如: HDU1686

总结

当然,也不能因为存在最坏的情况就直接否定Sunday算法,大多数情况下,Sunday依然是一个简单高效的算法,值得我们熟练学习掌握。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

The Master Switch

The Master Switch

Tim Wu / Knopf / 2010-11-2 / USD 27.95

In this age of an open Internet, it is easy to forget that every American information industry, beginning with the telephone, has eventually been taken captive by some ruthless monopoly or cartel. Wit......一起来看看 《The Master Switch》 这本书的介绍吧!

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具