Grassmann.jl A\b 3x faster than Julia's StaticArrays.jl

栏目: IT技术 · 发布时间: 4年前

内容简介:In this algebra, it’s possible to compute on a mesh of arbitrary 5 dimensionalAdditionally, inProgramming the

In this algebra, it’s possible to compute on a mesh of arbitrary 5 dimensional conformal geometric algebra simplices, which can be represented by a bundle of nested dyadic tensors.

julia> using Grassmann, StaticArrays; basis"+-+++"
(⟨+-+++⟩, v, v₁, v₂, v₃, v₄, v₅, v₁₂, v₁₃, v₁₄, v₁₅, v₂₃, v₂₄, v₂₅, v₃₄, v₃₅, v₄₅, v₁₂₃, v₁₂₄, v₁₂₅, v₁₃₄, v₁₃₅, v₁₄₅, v₂₃₄, v₂₃₅, v₂₄₅, v₃₄₅, v₁₂₃₄, v₁₂₃₅, v₁₂₄₅, v₁₃₄₅, v₂₃₄₅, v₁₂₃₄₅)

julia> value(rand(Chain{V,1,Chain{V,1}}))
5-element StaticArrays.SArray{Tuple{5},Chain{⟨+-+++⟩,1,  ,253} where 253 where   ,1,5} with indices SOneTo(5):
   -0.33459594357756073v₁ - 0.3920064467082769v₂ - 0.575474920388841v₃ + 0.6150287650825268v₄ - 0.7568209093000915v₅
  -0.7402635950699139v₁ - 0.9303076362461833v₂ + 0.9729806462365271v₃ - 0.8514563480551867v₄ + 0.09906887873006287v₅
  -0.7456570397821101v₁ - 0.6497560949330929v₂ + 0.4756585550844967v₃ - 0.31169948016530347v₄ - 0.9355928499340793v₅
   -0.4555014543082292v₁ + 0.712268225360094v₂ - 0.7500443783398549v₃ - 0.36349628003234713v₄ + 0.5005769037801056v₅
 -0.07402971220645727v₁ + 0.19911765119918146v₂ - 0.4980618129231722v₃ - 0.7728564279829087v₄ + 0.9165735719353756v₅

julia> A = Chain{V,1}(rand(SMatrix{5,5}))
(0.9244801277294266v₁ + 0.029444337884018346v₂ + 0.745495522394158v₃ + 0.6695874677964055v₄ + 0.4998003712198389v₅)v₁ + (0.5423877012973404v₁ + 0.30112324458605655v₂ + 0.9530587650033631v₃ + 0.2706004745612134v₄ + 0.37762612797501616v₅)v₂ + (0.7730171467954035v₁ + 0.019660709510785912v₂ + 0.39119534821037494v₃ + 0.9403026278575068v₄ + 0.07545094732793833v₅)v₃ + (0.7184128110093908v₁ + 0.6295740775044767v₂ + 0.5179035493253021v₃ + 0.039081667453648716v₄ + 0.3719284661613145v₅)v₄ + (0.5033657705978616v₁ + 0.41183905359914386v₂ + 0.7761548051732969v₃ + 0.07635587137916744v₄ + 0.5582934197259402v₅)v₅

Additionally, in Grassmann.jl we prefer the nested usage of pure ChainBundle parametric types for large re-usable global cell geometries, from which local dyadics can be selected.

Programming the A\b method is straight forward with some Julia language metaprogramming and Grassmann.jl by first instantiating some Cramer symbols

Base.@pure function Grassmann.Cramer(N::Int)
    x,y = SVector{N}([Symbol(:x,i) for i ∈ 1:N]),SVector{N}([Symbol(:y,i) for i ∈ 1:N])
    xy = [:(($(x[1+i]),$(y[1+i])) = ($(x[i])∧t[$(1+i)],t[end-$i]∧$(y[i]))) for i ∈ 1:N-1]
    return x,y,xy
end

These are exterior product variants of the Cramer determinant symbols ( N! times N -simplex hypervolumes), which can be combined to directly solve a linear system:

@generated function Base.:\(t::Chain{V,1,<:Chain{V,1}},v::Chain{V,1}) where V
    N = ndims(V)-1 # paste this into the REPL for faster eval
    x,y,xy = Grassmann.Cramer(N)
    mid = [:($(x[i])∧v∧$(y[end-i])) for i ∈ 1:N-1]
    out = Expr(:call,:SVector,:(v∧$(y[end])),mid...,:($(x[end])∧v))
    return Expr(:block,:((x1,y1)=(t[1],t[end])),xy...,
        :(Chain{V,1}(getindex.($(Expr(:call,:./,out,:(t[1]∧$(y[end])))),1))))
end

Which results in the following highly efficient @generated code for solving the linear system,

(x1, y1) = (t[1], t[end])
(x2, y2) = (x1 ∧ t[2], t[end - 1] ∧ y1)
(x3, y3) = (x2 ∧ t[3], t[end - 2] ∧ y2)
(x4, y4) = (x3 ∧ t[4], t[end - 3] ∧ y3)
Chain{V, 1}(getindex.(SVector(v ∧ y4, (x1 ∧ v) ∧ y3, (x2 ∧ v) ∧ y2, (x3 ∧ v) ∧ y1, x4 ∧ v) ./ (t[1] ∧ y4), 1))

Benchmarks with that algebra indicate a 3x faster performance than SMatrix for applying A\b to bundles of dyadic elements.

julia> @btime $(rand(SMatrix{5,5},10000)).\Ref($(SVector(1,2,3,4,5)));
  2.588 ms (29496 allocations: 1.44 MiB)

julia> @btime $(Chain{V,1}.(rand(SMatrix{5,5},10000))).\$(v1+2v2+3v3+4v4+5v5);
  808.631 μs (2 allocations: 390.70 KiB)

julia> @btime $(SMatrix(A))\$(SVector(1,2,3,4,5))
  150.663 ns (0 allocations: 0 bytes)
5-element SArray{Tuple{5},Float64,1,5} with indices SOneTo(5):
 -4.783720495603508
  6.034887114999602
  1.017847212237964
  6.379374861538397
 -4.158116538111051

julia> @btime $A\$(v1+2v2+3v3+4v4+5v5)
  72.405 ns (0 allocations: 0 bytes)
-4.783720495603519v₁ + 6.034887114999605v₂ + 1.017847212237964v₃ + 6.379374861538393v₄ - 4.1581165381110505v₅

Such a solution is not only more efficient than Julia’s StaticArrays.jl method for SMatrix , but is also useful to minimize allocations in Grassmann.jl finite element assembly.

Similarly, the Cramer symbols can also be manipulated to invert the linear system or for determining whether a point is within a simplex.

julia> using Grassmann; basis"3"
(⟨+++⟩, v, v₁, v₂, v₃, v₁₂, v₁₃, v₂₃, v₁₂₃)

julia> T = Chain{V,1}(Chain(v1),v1+v2,v1+v3)
(1v₁ + 0v₂ + 0v₃)v₁ + (1v₁ + 1v₂ + 0v₃)v₂ + (1v₁ + 0v₂ + 1v₃)v₃

julia> barycenter(T) ∈ T, (v1+v2+v3) ∈ T
(true, false)

There are multiple equivalent ways of computing the same results using the and : dyadic products.

julia> T\barycenter(T) == inv(T)⋅barycenter(T)
true

julia> sqrt(T:T) == norm(SMatrix(T))
true

The following Makie.jl streamplot was generated with the Grassmann.Cramer method and interpolated from Nedelec edges of a Maxwell finite element solution.

More info about these examples is at https://grassmann.crucialflow.com/dev/tutorials/dyadic-tensors

Hermann Grassmann was the inventor of linear algebra as we know it today.


以上所述就是小编给大家介绍的《Grassmann.jl A\b 3x faster than Julia's StaticArrays.jl》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

网站项目管理

网站项目管理

[美] 阿什利·弗里德莱因 / 李保庆、杨磊、王增东 / 电子工业出版社 / 2002-11 / 32.00元

这本书全方位地介绍了如何建立和最终交付一个具有很高商业价值的成功网站,讲解从项目管理的角度入手,撇开烦琐的技术细节,更加关注Web项目实施中诸如成本、进度、工作范围等问题,涉及了一个商业网站在实施过程中可能遇到的所有管理细节。书内附国际一流网站开发专家的深邃见解;涵盖了网络项目管理的关键原则及案例研究;通过友情链接,还为读者提供了模板、论坛、术语表、相关链接以及有关因特网知识的测验题。一起来看看 《网站项目管理》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具