AI Lesson for Teachers, Teens, and Everyone In Between

栏目: IT技术 · 发布时间: 5年前

内容简介:My goal is to outline a lesson that any teacher can use in the classroom or any person interested in a very high level understanding of how AI works can walk through. This is not meant to be an exact representation of how AI truly works, but simply give in

AI Lesson for Teachers, Teens, and Everyone In Between

My goal is to outline a lesson that any teacher can use in the classroom or any person interested in a very high level understanding of how AI works can walk through. This is not meant to be an exact representation of how AI truly works, but simply give intuition as to how it works. I have been a Math, SAT, ACT, ISEE tutor for close to a decade and work in machine learning research.

Pre-requisites: know what a probability is.

There are 2 sub-lessons, 1 smaller one and 1 larger one. All lessons will be under the scope of computer vision problems — object detection.

  1. Supervised learning vs Unsupervised learning
  2. Training a machine learning model

Machine learning problems are often broken into two categories, supervised and unsupervised problems. Supervised problems are where you give the model examples of something and then expect it to be able to predict that thing later on an unseen image. Unsupervised problems are where you have a bunch of images and you try to figure out which ones are most closely related (not based on anything except what you can see) and then group them without knowing what the final class you are trying to predict actually is.

Supervised Learning

I will now show you a series of shapes and a name for the shape.

“zhags”

These shapes above are called zhags .

“flarks”

These shapes above are called flarks .

Now I will present you with an object and you tell me if it’s a zhag or a flark. There is a hidden rule that categorizes zhags and flarks. Your job is to learn that rule.

?

This is a zhag . If you guessed that, awesome! You learned a successful model.

But maybe now you get an object that doesn’t fit exactly what you thought.

?

This is a flark .

Little did you know, the hidden rule is if the shape has any curve at all it is a flark. This is why sufficient training data is so important to machine learning problems! If this was a missing training data point in an autonomous vehicle this could cost someone their life.

Unsupervised Learning

Say we have a set of images and strictly using the images and no previous knowledge we need to place them on the xy -plane where their distance between each other represents how different they are from one another.

Here are a group of images.

Images from Wikipedia

Now we are meant to place these on the xy -plane. Here’s a possible iteration of this.

So if I now said, group these into two sets you probably would do this one of two ways.


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

国家窃听

国家窃听

真溱 / 中信出版社 / 2015-8 / 48.00元

《国家窃听》以轻松而略带调侃的“冷幽默”风格,讲述了美国情报监视帝国大量不为人知的故事。本书以严谨而专业的视角,将“斯诺登事件”放在21世纪以来美国“全球反恐战争”以及美国情报界几十年发展的大背景下进行考察,揭示出这一事件的内在逻辑和历史必然。作者前期搜集、筛选、整理的一手素材在故事叙述过程中清晰而多层次地呈现,令本书堪称一部非虚构的美国情报界演义。一起来看看 《国家窃听》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具