Splitting a dataset

栏目: IT技术 · 发布时间: 5年前

内容简介:To train any machine learning model irrespective what type of dataset is being used you have to split the dataset into training data and testing data. So, let us look into how it can be done?Here I am going to use the iris dataset and split it using the ‘t
Image by author

To train any machine learning model irrespective what type of dataset is being used you have to split the dataset into training data and testing data. So, let us look into how it can be done?

Here I am going to use the iris dataset and split it using the ‘train_test_split’ library from sklearn

from sklearn.model_selection import train_test_splitfrom sklearn.datasets import load_iris

Then I load the iris dataset into a variable.

iris = load_iris()

Which I then use to store the data and target value into two separate variables.

x, y = iris.data, iris.target

Here I have used the ‘train_test_split’ to split the data in 80:20 ratio i.e. 80% of the data will be used for training the model while 20% will be used for testing the model that is built out of it.

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=123)

As you can see here I have passed the following parameters in ‘train_test_split’:

  1. x and y that we had previously defined
  2. test_size: This is set 0.2 thus defining the test size will be 20% of the dataset
  3. random_state: it controls the shuffling applied to the data before applying the split. Setting random_state a fixed value will guarantee that the same sequence of random numbers are generated each time you run the code.

When splitting a dataset there are two competing concerns:

-If you have less training data, your parameter estimates have greater variance.

-And if you have less testing data, your performance statistic will have greater variance.

The data should be divided in such a way that neither of them is too high, which is more dependent on the amount of data you have. If your data is too small then no split will give you satisfactory variance so you will have to do cross-validation but if your data is huge then it doesn’t really matter whether you choose an 80:20 split or a 90:10 split (indeed you may choose to use less training data as otherwise, it might be more computationally intensive).


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

这就是OKR

这就是OKR

【美】约翰·杜尔(John Doerr) / 曹仰锋、王永贵 / 中信出版社 / 2018-12 / 68.00元

这本书是传奇风险投资人约翰·杜尔的作品,揭示了OKR这一目标设定系统如何促使英特尔、谷歌等科技巨头实现爆炸性增长,以及怎样促进所有组织的蓬勃发展。 20世纪70年代,在英特尔担任工程师时,杜尔首次接触到OKR。之后,作为一个风险投资人,杜尔不遗余力地将这一管理智慧,分享给50多家公司和机构,包括谷歌、亚马逊、领英、脸书、比尔及梅琳达·盖茨基金会,甚至摇滚歌手波诺的公益项目。在杜尔的帮助下,任......一起来看看 《这就是OKR》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具