Splitting a dataset

栏目: IT技术 · 发布时间: 5年前

内容简介:To train any machine learning model irrespective what type of dataset is being used you have to split the dataset into training data and testing data. So, let us look into how it can be done?Here I am going to use the iris dataset and split it using the ‘t
Image by author

To train any machine learning model irrespective what type of dataset is being used you have to split the dataset into training data and testing data. So, let us look into how it can be done?

Here I am going to use the iris dataset and split it using the ‘train_test_split’ library from sklearn

from sklearn.model_selection import train_test_splitfrom sklearn.datasets import load_iris

Then I load the iris dataset into a variable.

iris = load_iris()

Which I then use to store the data and target value into two separate variables.

x, y = iris.data, iris.target

Here I have used the ‘train_test_split’ to split the data in 80:20 ratio i.e. 80% of the data will be used for training the model while 20% will be used for testing the model that is built out of it.

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=123)

As you can see here I have passed the following parameters in ‘train_test_split’:

  1. x and y that we had previously defined
  2. test_size: This is set 0.2 thus defining the test size will be 20% of the dataset
  3. random_state: it controls the shuffling applied to the data before applying the split. Setting random_state a fixed value will guarantee that the same sequence of random numbers are generated each time you run the code.

When splitting a dataset there are two competing concerns:

-If you have less training data, your parameter estimates have greater variance.

-And if you have less testing data, your performance statistic will have greater variance.

The data should be divided in such a way that neither of them is too high, which is more dependent on the amount of data you have. If your data is too small then no split will give you satisfactory variance so you will have to do cross-validation but if your data is huge then it doesn’t really matter whether you choose an 80:20 split or a 90:10 split (indeed you may choose to use less training data as otherwise, it might be more computationally intensive).


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Linux内核设计与实现(原书第3版)

Linux内核设计与实现(原书第3版)

Robert Love / 陈莉君、康华 / 机械工业出版社华章公司 / 2011-4-30 / 69.00元

《Linux内核设计与实现(原书第3版)》详细描述了Linux内核的设计与实现。内核代码的编写者、开发者以及程序开发人员都可以通过阅读本书受益,他们可以更好理解操作系统原理,并将其应用在自己的编码中以提高效率和生产率。 《Linux内核设计与实现(原书第3版)》详细描述了Linux内核的主要子系统和特点,包括Linux内核的设计、实现和接口。从理论到实践涵盖了Linux内核的方方面面,可以满......一起来看看 《Linux内核设计与实现(原书第3版)》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具