Adding Cloud-Based Deep-Learning Object Detection Capability to Home Surveillance Camera Sy...

栏目: IT技术 · 发布时间: 4年前

内容简介:I recently installed a surveillance system equipped with four cameras and a Network Video Recorder (NVR) around my house. Unfortunately, almost all false alarms were triggered by moving plants or tree shadows or squirrels. None of these alarms can be filte

Practical Deep Learning from Jupyter to Serverless Web Application

Jun 14 ·5min read

I recently installed a surveillance system equipped with four cameras and a Network Video Recorder (NVR) around my house. Unfortunately, almost all false alarms were triggered by moving plants or tree shadows or squirrels. None of these alarms can be filtered out by traditional image processing capabilities coming with the system.

Like most deep learning practitioners, I know object detection programs can filter out these false alarms. But they either require an expensive commercial contract or a computer on my home network. Since I want to keep the cost low, having a computer seems the right choice. However, it’s still a rather large initial capital investment plus the recurring 24/7 electricity cost. The computer also requires setup, maintenance, and shelf space. Its fan noise or heat dissipation from the closet is another nonsense I prefer not to deal with at home.

Adding Cloud-Based Deep-Learning Object Detection Capability to Home Surveillance Camera Sy...

Most false alarms are simply trigged by moving tree shade and plants. These false alarms cannot be filtered out using traditional image processing techniques such as adjusting contrast threshold or setting active zones

Upon further research, I found out using serverless web APIs is the best solution. It not only gives fast response but also charges a very small fee based on usages. I also want to optimize the deep learning algorithm by myself or to reconfigure the implementation for advanced deep learning applications. I have thus chosen MXNet running on AWS. The combination allows easy deep learning code development using Jupyter, optimized library performance, abundant pre-trained models, and the powerful open cloud infrastructure.


以上所述就是小编给大家介绍的《Adding Cloud-Based Deep-Learning Object Detection Capability to Home Surveillance Camera Sy...》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

我是90后,我是创业家

我是90后,我是创业家

腾讯互联网与社会研究院 / 华章图书 / 2015-1-1 / 48.00元

第1本揭秘17个90后精彩创业故事 他们是:脸萌创始人郭列、北大硕士卖米粉的张天一、微博《我只过1%的生活》短时间转发35万多次的伟大的安妮、备受争议的90后总裁余佳文、节操姐CEO陈桦……17位90后的创业家为你分享他们的创业故事!从这些90后孩子的经历中,还可以看到互联网带来的巨大好处,这又是这一代人的幸运。这些创业者有一个共同特点,即他们在做自己事业的时候,会经常遇到来自家庭和社会的阻......一起来看看 《我是90后,我是创业家》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

SHA 加密
SHA 加密

SHA 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试