Life as Thermodynamic Evidence of Algorithmic Structure in Nature (2012)

栏目: IT技术 · 发布时间: 4年前

Open Access Article

Life as Thermodynamic Evidence of Algorithmic Structure in Natural Environments

by Life as Thermodynamic Evidence of Algorithmic Structure in Nature (2012) Hector Zenil 1,* , 2 , 1 and 2

1

Behavioral and Evolutionary Theory Lab, Department of Computer Science/Kroto Research Institute, University of Sheffield, Regent Court, 211 Portobello, Sheffield, S1 4DP, UK

2

Department of Computer Science, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Ciudad Universitaria. C.P. 04510, México, D.F., Mexico

*

Author to whom correspondence should be addressed.

Entropy 2012 , 14 (11), 2173-2191; https://doi.org/10.3390/e14112173

Received: 3 September 2012 / Revised: 29 October 2012 / Accepted: 30 October 2012 / Published: 5 November 2012

(This article belongs to the Special Issue Selected Papers from Symposium on Natural/Unconventional Computing and Its Philosophical Significance )

View Full-Text Download PDF

Abstract

In evolutionary biology, attention to the relationship between stochastic organisms and their stochastic environments has leaned towards the adaptability and learning capabilities of the organisms rather than toward the properties of the environment. This article is devoted to the algorithmic aspects of the environment and its interaction with living organisms. We ask whether one may use the fact of the existence of life to establish how far nature is removed from algorithmic randomness. The paper uses a novel approach to behavioral evolutionary questions, using tools drawn from information theory, algorithmic complexity and the thermodynamics of computation to support an intuitive assumption about the near optimal structure of a physical environment that would prove conducive to the evolution and survival of organisms, and sketches the potential of these tools, at present alien to biology, that could be used in the future to address different and deeper questions. We contribute to the discussion of the algorithmic structure of natural environments and provide statistical and computational arguments for the intuitive claim that living systems would not be able to survive in completely unpredictable environments, even if adaptable and equipped with storage and learning capabilities by natural selection (brain memory or DNA).View Full-Text

Keywords: behavioral ecology ; algorithmic randomness ; computational thermodynamics ; Kolmogorov–Chaitin complexity ; information theory

Life as Thermodynamic Evidence of Algorithmic Structure in Nature (2012)

Figure 1


以上所述就是小编给大家介绍的《Life as Thermodynamic Evidence of Algorithmic Structure in Nature (2012)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

机器学习

机器学习

(美)Tom Mitchell / 曾华军、张银奎、等 / 机械工业出版社 / 2008-3 / 35.00元

《机器学习》展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。《机器学习》综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。《机器学习》可作为计算机专业 本科生、研究生教材,也可作为相关领域研究人员、教师的参考书。一起来看看 《机器学习》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

MD5 加密
MD5 加密

MD5 加密工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具