TLS 1.3 session resumption works without master key, allowing MITM

栏目: IT技术 · 发布时间: 5年前

GnuTLS servers are able to use tickets issued by each other without access to the secret key as generated by gnutls_session_ticket_key_generate() . This allows a MITM server without valid credentials to resume sessions with a client that first established an initial connection with a server with valid credentials. The issue applies to TLS 1.3, when using TLS 1.2 resumption fails as expected.

Because the ticket can be used for resumption without knowledge of the master key I assume (but haven't tested yet) that it can also be used for passive decryption of early data.

I first noticed the issue with Ubuntu version 3.6.13-2ubuntu1, and reproduced it with a build from master as of52e78f1e.

Steps to Reproduce

gnutls-serv --x509keyfile=authority/server/secret.key --x509certfile=authority/server/x509.pem
openssl s_client -connect localhost:5556 -CAfile authority/x509.pem -verify_return_error -sess_out session.cache
gnutls-serv --x509keyfile=rogueca/mitm/secret.key --x509certfile=rogueca/mitm/x509.pem
openssl s_client -connect localhost:5556 -CAfile authority/x509.pem -verify_return_error -sess_in session.cache

I've used openssl s_client to reproduce the problem because gnutls-cli lacks a way to store resumption data across invocations, but the effect is also reproducible with applications using GnuTLS that cache session data long enough to change the server. I noticed the issue while implementing session resumption for proxy connections in mod_gnutls.

The certificates are just ones out of my test PKI, I can post them if it helps. What matters is that the server from step 1 has a certificate issued by a CA the client trusts, while the server from step 4 has one issued by a CA unknown to the client.

Actual results

The bogus server is able to resume the session, the client does not detect the attack.

Expected results

Session resumption should fail, leading to a full handshake, which must fail unless the second server has valid credentials. A successful full handshake would be the expected result if the server would be restarted with the same certificate instead of a bogus one.

GnuTLS servers are able to use tickets issued by each other without access to the secret key as generated by gnutls_session_ticket_key_generate() . This allows a MITM server without valid credentials to resume sessions with a client that first established an initial connection with a server with valid credentials. The issue applies to TLS 1.3, when using TLS 1.2 resumption fails as expected.

Because the ticket can be used for resumption without knowledge of the master key I assume (but haven't tested yet) that it can also be used for passive decryption of early data.

I first noticed the issue with Ubuntu version 3.6.13-2ubuntu1, and reproduced it with a build from master as of 52e78f1e3a95a6d9e4f1f9a72f6d77102e80f196.

Steps to Reproduce

gnutls-serv --x509keyfile=authority/server/secret.key --x509certfile=authority/server/x509.pem
openssl s_client -connect localhost:5556 -CAfile authority/x509.pem -verify_return_error -sess_out session.cache
gnutls-serv --x509keyfile=rogueca/mitm/secret.key --x509certfile=rogueca/mitm/x509.pem
openssl s_client -connect localhost:5556 -CAfile authority/x509.pem -verify_return_error -sess_in session.cache

I've used openssl s_client to reproduce the problem because gnutls-cli lacks a way to store resumption data across invocations, but the effect is also reproducible with applications using GnuTLS that cache session data long enough to change the server. I noticed the issue while implementing session resumption for proxy connections in mod_gnutls.

The certificates are just ones out of my test PKI, I can post them if it helps. What matters is that the server from step 1 has a certificate issued by a CA the client trusts, while the server from step 4 has one issued by a CA unknown to the client.

Actual results

The bogus server is able to resume the session, the client does not detect the attack.

Expected results

Session resumption should fail, leading to a full handshake, which must fail unless the second server has valid credentials. A successful full handshake would be the expected result if the server would be restarted with the same certificate instead of a bogus one.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

深入剖析Tomcat

深入剖析Tomcat

Budi Kurniawan、Paul Deck / 曹旭东 / 机械工业出版社华章公司 / 2011-12-31 / 59.00元

本书深入剖析Tomcat 4和Tomcat 5中的每个组件,并揭示其内部工作原理。通过学习本书,你将可以自行开发Tomcat组件,或者扩展已有的组件。 Tomcat是目前比较流行的Web服务器之一。作为一个开源和小型的轻量级应用服务器,Tomcat 易于使用,便于部署,但Tomcat本身是一个非常复杂的系统,包含了很多功能模块。这些功能模块构成了Tomcat的核心结构。本书从最基本的HTTP请求开......一起来看看 《深入剖析Tomcat》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

SHA 加密
SHA 加密

SHA 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换