Visualize Missing Values with Missingno

栏目: IT技术 · 发布时间: 5年前

内容简介:Explore the missing values in your dataset.Data is the new fuel. However, the raw data is cheap. We need to process it well to take the most value out of it. Complex, well-structured models are as good as the data we feed to it. Thus, data needs to be clea

Visualize Missing Values with Missingno

Explore the missing values in your dataset.

Photo by Irina on Unsplash

Data is the new fuel. However, the raw data is cheap. We need to process it well to take the most value out of it. Complex, well-structured models are as good as the data we feed to it. Thus, data needs to be cleaned and processed thoroughly in order to build robust and accurate models.

One of the issues that we are likely to encounter in raw data is missing values. Consider a case where we have features (columns in a dataframe) on some observations (rows in a dataframe). If we do not have the value in a particular row-column pair, then we have a missing value. We may have only a few missing values or half of an entire column may be missing. In some cases, we can just ignore or drop the rows or columns with missing values. On the other, there might be some cases in which we cannot afford to drop even a single missing value. In any case, handling missing values process starts with exploring them in the dataset.

Pandas provides functions to check the number of missing values in the dataset. Missingno library takes it one step further and provides the distribution of missing values in the dataset by informative visualizations. Using the plots of missingno , we are able to see where the missing values are located in each column and if there is a correlation between missing values of different columns. Before handling missing values, it is very important to explore them in the dataset. Thus, I consider missingno as a highly valuable asset in data cleaning and preprocessing steps.

In this post, we will explore the functionalities of missingno plot by going through some examples.

Let’s first try to explore a dataset about the movies on streaming platforms. The dataset is available here on kaggle.

import numpy as np
import pandas as pddf = pd.read_csv("/content/MoviesOnStreamingPlatforms.csv")
print(df.shape)
df.head()

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

运营之光

运营之光

黄有璨 / 电子工业出版社 / 2016-9-1 / 59.00元

在互联网行业内,“运营”这个职能发展到一定阶段后,往往更需要有成熟的知识体系和工作方法来给予行业从业者们以指引。 《运营之光:我的互联网运营方法论与自白》尤其难得之处在于:它既对“什么是运营”这样的概念认知类问题进行了解读,又带有大量实际的工作技巧、工作思维和工作方法,还包含了很多对于运营的思考、宏观分析和建议,可谓内容完整而全面,同时书中加入了作者亲历的大量真实案例,让全书读起来深入浅出、......一起来看看 《运营之光》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具