eBPF Internal:Instructions and Runtime

栏目: IT技术 · 发布时间: 4年前

内容简介:eBPF 是最近几年异常火爆的一门内核技术,从 2011 年开发至今,eBPF 社区依然非常活跃 。eBPF 可以通过热加载的方式动态的获取、修改内核中的关键数据和执行逻辑,避免内核模块的方式可能会引入宕机风险,并具备堪比原生代码的执行效率。大家已经在各种文章中了解到 eBPF 的应用场景、最佳实践等,也在 cilium 和 bcc 等工具中领略到了 eBPF 的强大能力。eBPF 是如何具备堪比原生的执行效率和动态扩展当前 Linux 内核的能力,接下来将为大家揭开这一层薄纱。首先我们介绍一下 eBPF

eBPF 是最近几年异常火爆的一门内核技术,从 2011 年开发至今,eBPF 社区依然非常活跃 。eBPF 可以通过热加载的方式动态的获取、修改内核中的关键数据和执行逻辑,避免内核模块的方式可能会引入宕机风险,并具备堪比原生代码的执行效率。

大家已经在各种文章中了解到 eBPF 的应用场景、最佳实践等,也在 cilium 和 bcc 等 工具 中领略到了 eBPF 的强大能力。eBPF 是如何具备堪比原生的执行效率和动态扩展当前 Linux 内核的能力,接下来将为大家揭开这一层薄纱。

Intro

首先我们介绍一下 eBPF 的前世今生,以便我们更好的了解接下来的内容。如果已有了解和实践,可快速跳到下一章节。

大家或多或少都接触使用过 tcpdump 工具,tcpdump 可以根据用户指定的自定义过滤规则,在报文出入协议栈时获取报文的元信息。tcpdump 之所以可以灵活的过滤用户报文,本质是将过滤规则转化为一种特殊的指令,例如下图:

eBPF Internal:Instructions and Runtime

这种特殊的指令被称为 BPF,在 eBPF 诞生后被称为 cBPF。这种特殊指令通过 libpcap 接口传递进入内核,当网卡收到了数据包后会执行注册的 AF_ PA CK 协议中的 packet_rcv 函数,执行用户态传入的 BPF 指令,如果满足过滤规则就 clone 到用户态。大体的流程如下图:

eBPF Internal:Instructions and Runtime

通过这种机制可以极大提高了规则的灵活度,可以根据用户的需求过滤复杂的报文。同时可以不断优化内核中的 BPF 指令执行器提高执行效率,例如 JIT、SIMD 等等。

cBPF (classic Berkeley Packet Filter) 的诞生可以追溯到 1992 年。tcpdump 作为 cBPF 的典型应用,seccomp 也基于 cBPF 进行安全过滤。cBPF 主要特点如下:

  1. 内核内置 BPF 指令解释器,允许从用户态传入内核中;
  2. 图灵不完备,BPF 指令不具备循环等语义,确保内核执行指令的安全;
  3. 解释运行,支持 JIT。如上面提到的 tcpdump 场景,每一个报文皆需要经过过滤器,指令的执行速度严重影响性能,故引入了常见的 JIT 指令优化方式,可以将指令转换为本地指令,加速指令执行,通常会有数倍的性能提升;

时间逐渐来到了 21 世纪,eBPF 从 2011 年开始开发。eBPF 与 cBPF 的主要区别如下:

  1. 定义了新的 ISA,扩展了 cBPF 指令,eBPF 的指令主要受 amd64 和 arm64 的影响,并扩展了 64bit 的寄存器;
  2. 使用 LLVM 作为 BPF 的编译器,由于 eBPF 指令极大的扩展,并支持将 C 编译为 BPF 指令集,再将编译器内置在内核中会引入庞大的代码,同时社区已有 LLVM 和 GCC 等成熟的工具,故首先基于 LLVM 扩展了 BPF 后端,GCC 距离使用还要等等;
  3. 引入了用户可使用的 bpf.h 头文件,便于用户态程序使用内核封装的 eBPF 程序;
  4. 依然是图灵不完备,安全和效率依然是第一位考虑,不过在最近的内核中引入了 bonded loop,可以在安全的情况下执行循环;
  5. 解释运行,支持 JIT。同 cBPF,但是扩展了更多的架构,支持在 amd64 和 aarch64 等更多的架构;

经过了 cBPF 和 eBPF 的不断迭代和发展,基于 BPF 已经诞生了很多生产级别的项目:

  1. Katran,Facebook 开源的 4 层负载均衡,基于 XDP;
  2. BCC 工具集,bpftrace 和 systemtap-bpf,丰富并增强了内核调试和跟踪的能力;
  3. Cilium,微服务和 k8s 场景下的网络治理工具;
  4. IO Visor Project,提到了 BCC 就不能不提到 iovisor 项目,其开源了 BCC, bpftrace, gobpf, ubpf 等一众工具;

当前的 BPF 常见模型:无循环、无锁的简短的 BPF 程序,将很多内核的 helper 和 hook 点粘合在一起。在下面这几种场景下都有运用:

  1. Tracing

    a. kprobe

    b. tracepoint

  2. Networking

    a. sched

    b. XDP

  3. Security

    a. secomp

最后,大家为什么会去了解并使用 BPF。很重要的原因是为了更多的控制权,包括实现一些在用户态还不能够满足需求,或者内核的某些行为需要修改的场景。BPF 的最佳场景也是在用户态和内核态互相配合,共享数据。当然,BPF 也是 CO-RE,一次编译各处运行,具有比较好的可移植性。

Why BPF is FAST

BPF 在内核中的运行,可以概括为下面的流程:

eBPF Internal:Instructions and Runtime

我们假设一种场景,我们将 BPF attach 到了某个热点的 tracepoint 之上,例如收发包,每次收发包时,tracepoint attached 的 BPF 程序都会被执行一遍。在比较繁忙的机器上,收发包可能每秒钟百万次,执行效率至关重要,如果 BPF 程序被 attach 在热点中,性能问题很可能会成千上万倍的放大。在我们探讨 BPF 程序为什么会执行的如此之快之前,我们有必要先了解下 BPF 指令和解释器。

指令

BPF 当前拥有 102 个指令,主要包括三大类:ALU (64bit and 32bit)、内存操作和分支操作。其中指令的格式主要由下面这几部分组成:

  1. 8bit opcode
  2. 4bit destination register (dst)
  3. 4bit source register (src)
  4. 16bit 偏移
  5. 32bit 立即数

eBPF Internal:Instructions and Runtime

与我们常见的 x86 或 ARM 的指令非常接近。在定义了指令后,每一条的指令执行,是通过内核中的解释器运行,流程可以抽象为一个 loop 循环,也被称为指令分发,循环内会不断的载入指令、执行指令,直至退出。

eBPF Internal:Instructions and Runtime

虚拟机

我们可以认为是 BPF 字节码是运行在内核中的 BPF 虚拟机中,BPF 字节码也是我们通常提到的 p-code (portable code),主要目的是为了软件解释器的高效运行。提到了虚拟机,不得不提到我们常见的几种解释运行的语言,例如 Python 和 Lua。根据虚拟机的实现,可以分为两类,基于栈的虚拟机和基于寄存器的虚拟机,其中基于栈的虚拟机的思想,最早是来自于 Pascal,CPython 和 Lua 4 同样是基于栈的虚拟机。Lua 5 和 Dalvik JVM 则是基于寄存器的虚拟机,BPF 同样是基于寄存器的虚拟机,那么栈和寄存器的实现有何不同,性能是否有所差异,接下来我们继续分析。

基于栈的虚拟机,顾名思义指令是以栈的数据结构组织的。下面的图可以比较清晰的展示这一流程:

eBPF Internal:Instructions and Runtime

当我们需要获得 20+7 结果时,需要生成 4 条指令,LIFO 执行。这样会生成更多的指令,同时需要移动多次内存,但是由于没有众多的寄存器,虚拟机的实现会相对简单。

我们再来看下基于寄存器的虚拟机,不同于频繁操作栈,它可以直接操作寄存器,如下图流程演示:

eBPF Internal:Instructions and Runtime

同样的需要获得 20+7 的结果,在寄存器足够的情况下,我们只需要生成并执行一条指令即可。指令行数相对于栈的实现有显著减少,效率也会提高。但是基于寄存器的虚拟机实现会更加复杂,同时每次指令需要访问更多的内存,并且指令也会更复杂,因为需要提供 2,3,4 地址指令的支持。

通过 Data from A Performance on Stack-based and Register-based Virtual Machine 论文,我们可以对通用场景下,基于栈和基于寄存器的进行一个简单的对比:

  • 基于寄存器的虚拟机性能在总的时间上比基于栈的虚拟机快 20.39%;
    • 指令分发执行,基于寄存器的虚拟机快 66.42%
    • 数据获取,基于栈的虚拟机快 23.5%

eBPF Internal:Instructions and Runtime

eBPF Internal:Instructions and Runtime

通过这个对比,我们可以得出一个初步结论,在通用场景下,基于寄存器比基于栈的虚拟机实现,性能更好。当然仅仅这种精心设计的测试可能实际意义不是很大,我们还需要一个实际生产级别的示例和数据。巧合的是,Lua 4 的虚拟机实现是基于栈,而 Lua 5 换成了性能更好的基于寄存器的实现。我们对比了二者的性能:

eBPF Internal:Instructions and Runtime

通过这一个官方的数据对比,可以看出来 Lua 5 比 Lua 4 快了 34% 左右。由此可见在实际的应用中,基于寄存器的虚拟机确实可以带来更高的性能,但是从上面的数据看到,仅仅百分之几十的性能提升,相对于原生指令还有更大的提升余地。

JIT

在语言层面的性能对比中,有一个代表性的性能测试场景 Techempower。一门语言,和这门语言下的不同 web 框架,分别测试 HTTP 处理性能。通过下面这种图,我们可以看到,编译为本地代码的语言性能遥遥领先,而 Python 这种解释运行的语言却名落孙山,但是其中有一个例外,Java 的性能可以和 Rust、 Go 这些语言互有胜负,我们已经知道 Java 某种意义上也是解释运行,抛开 Java VM 多年持续优化,与 CPython 最大的不同则是 JIT 的支持。

eBPF Internal:Instructions and Runtime

何为 JIT?JIT (Just-in-time) 在 2011 年引入到 cBPF。与 JIT 相对应的为 AOT (ahead-of-time)。JIT 不需要解释器,或者说扩展了解释器,JIT 在运行时会将指令编译为原生指令在本机执行。BPF 虚拟机会将所有的字节码翻译到本地原生代码再执行,具体的是翻译 BPF 字节码到本地原生代码,保存到内存中的特定区域并执行。BPF 程序通常比较简洁和轻量,引入 JIT 不会显著影响冷启动性能。

启用 JIT 究竟会带来多大的性能提升?之前提到的 Lua 在之后的版本提供了 LuaJIT 的实现,最大的变化是使用 JIT 重写。下面是一组 LuaJIT vs Lua 的性能数据,我们可以看到 LuaJIT 比 Lua 快 2-10 倍。

eBPF Internal:Instructions and Runtime

同样的,PyPy 是 CPython 基于 JIT 的实现,我们看到 PyPy 比 CPython 快 2-10 倍。

eBPF Internal:Instructions and Runtime

对于 BPF 而言,JIT 究竟会带来多大的性能?uBPF 是一个很好的测试程序,uBPF 是 BPF 虚拟机在用户态的实现,它提供了可选的 JIT,我们可以使用 clang 将测试程序编译为 elf 文件,分别测试开启和关闭 JIT 情况下,执行同一个 BPF 程序的性能。从下面的测试数据可以看到,开启 JIT 后性能同样也有数倍的提升。

eBPF Internal:Instructions and Runtime

How BPF extends Kernel

我们在前面的内容中,提到了编译、指令集和虚拟机。那么 BPF 是如何编译成一个可执行文件,在内核中运行的?

LLVM

当前 BPF 的编译离不开 LLVM,LLVM 分为前端和后端,我们可以将任何语言编译为 LLVM IR,这是一种中间文件。LLVM 可以将 LLVM IR 编译为目标文件,也就是我们提到的二进制文件。

eBPF Internal:Instructions and Runtime

对于 BPF 而言,我们可以使用 clang 将 BPF 编译为 LLVM IR 文件,LLVM 当前已经支持 BPF 作为目标文件,因此我们可以将任何的 LLVM IR 编译为 BPF 目标文件。大体的流程可以参考下图:

eBPF Internal:Instructions and Runtime

一张图

我们当前在使用 C 编写,并编译成 BPF 程序。从上面的流程中,我们可以了解到,我们可以将任何语言翻译为 LLVM IR,只需要这门语言提供 LLVM 的前端,我们就可以将这门语言编译为 BPF 目标文件。幸运的是,当前很多主流语言都提供了 LLVM 的前端,例如 C, C++, Go Haskell 等等。

我们将各种语言编译为 BPF 目标文件后,我们不仅可以使用这些语言来开发 BPF 程序,我们还可以将 BPF 作为一种通用的指令集,使用用户态的虚拟机来运行 BPF 执行,作为一种平台无关、CO-RE 的指令架构。

WASM

如同现在如日中天的 WASM,作为一种开源的可移植的字节码格式,在边缘计算和浏览器中被广泛使用。其中 WASM 已有具备了在内核中执行的能力,BPF 作为内核的亲儿子,相比于 WASM 更适合在内核中运行,并且可以与内核更紧密的结合。

eBPF Internal:Instructions and Runtime

BPF in the future

在谈未来之前,我们不能忘记 BPF 的初衷:

BPF goal

  • Let non-kernel developers safely and easily modify kernel behavior.

BPF non goals

  • Implement dynamic tracing and kernel introspection
  • Implement software defined networking, firewalls, load balancers, service mesh

在秉持着 BPF 的 goals 前提下,我们在未来做的更多,场景也更大:

BPF in kernel

  • 安全的锁和内存操作
  • 允许用户在内核中执行更多的指令
  • 更快的速度

BPF in user-space

  • 作为一种通用的字节码
  • CO-RE
  • 原生支持 Rust、Go 和其他语言

尾巴

我们团队在使用 eBPF 做一些很 cool 的事情,包括将社区的 bcc 工具包引入集团和 Aliyun Linux 2 中,基于 eBPF + tracepoint 自研了网络时延跟踪工具 NX tracepoint 等等。如果有对 BPF 技术生态感兴趣的小伙伴可以随时联系我们。

项目资源:

钉钉群号:23149462

阿里云智能基础软件部技术博客

Alibaba Cloud Kernel

本文转载自公众号云巅论剑(ID:gh_343da880efaa)。

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUxNjE3MTcwMg==&mid=2247484373&idx=1&sn=e309509ab27431a009491e9b80b4ebf1&chksm=f9aa310cceddb81a346cb903aab53b02a4cefaf52527e3467c659bcc9fee4ccaa800763edc84&token=1227388349&lang=zh_CN#rd


以上所述就是小编给大家介绍的《eBPF Internal:Instructions and Runtime》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

千夫所指

千夫所指

乔恩·罗森 / 王岑卉 / 九州出版社 / 2016-10-1 / CNY 42.80

编辑推荐: 《乌合之众》是为了跪舔权贵?《普通心理学》实验存在重大漏洞?《引爆点》的理论都是瞎掰的?社交网络时代《1984》预言的“老大哥”是否已经变成事实? 《纽约时报》年度十佳书 《GQ》杂志年度十佳书 《卫报》年度十佳书 《泰晤士报》年度十佳书 《经济学人》年度重推! 黑天鹅年度重点图书! 《乌合之众》是为了迎合权贵?《普通心理学》实验存在重大......一起来看看 《千夫所指》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

在线进制转换器
在线进制转换器

各进制数互转换器

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试