x86 Instruction Listings

栏目: IT技术 · 发布时间: 4年前

内容简介:Thex86 instruction set refers to the set of instructions thatx86-compatiblemicroprocessors support. The instructions are usually part of anexecutable program, often stored as acomputer file and executed on the processor.The x86 instruction set has been ext

Thex86 instruction set refers to the set of instructions thatx86-compatiblemicroprocessors support. The instructions are usually part of anexecutable program, often stored as acomputer file and executed on the processor.

The x86 instruction set has been extended several times, introducing widerregisters and datatypes as well as new functionality.

Contents

  • 1 x86 integer instructions
    • 1.1 Original 8086/8088 instructions
    • 1.2 Added in specific processors
      • 1.2.1 Added with 80186/80188
      • 1.2.2 Added with 80286
      • 1.2.3 Added with 80386
      • 1.2.4 Added with 80486
      • 1.2.5 Added with Pentium
      • 1.2.6 Added with Pentium MMX
      • 1.2.7 Added with AMD K6
      • 1.2.8 Added with Pentium Pro
      • 1.2.9 Added with Pentium II
      • 1.2.10 Added with SSE
      • 1.2.11 Added with SSE2
      • 1.2.12 Added with SSE3
      • 1.2.13 Added with SSE4.2
      • 1.2.14 Added with x86-64
      • 1.2.15 Added with AMD-V
      • 1.2.16 Added with Intel VT-x
      • 1.2.17 Added with ABM
      • 1.2.18 Added with BMI1
      • 1.2.19 Added with BMI2
      • 1.2.20 Added with TBM
      • 1.2.21 Added with CLMUL instruction set
      • 1.2.22 Added with Intel ADX
  • 2 x87 floating-point instructions
    • 2.1 Original 8087 instructions
    • 2.2 Added in specific processors
      • 2.2.1 Added with 80287
      • 2.2.2 Added with 80387
      • 2.2.3 Added with Pentium Pro
      • 2.2.5 Added with SSE3
      • 3.1.1 Original MMX instructions
      • 3.1.2 MMX instructions added in specific processors
        • 3.1.2.1 EMMI instructions
        • 3.1.2.2 MMX instructions added with MMX+ and SSE
        • 3.1.2.3 MMX instructions added with SSE2
        • 3.1.2.4 MMX instructions added with SSSE3
    • 3.2 3DNow! instructions
    • 3.3 3DNow!+ instructions
      • 3.3.1 Added with Athlon and K6-2+
      • 3.3.2 Added with Geode GX
    • 3.5 SSE2 instructions
      • 3.5.1 SSE2 SIMD floating-point instructions
        • 3.5.1.1 SSE2 data movement instructions
        • 3.5.1.2 SSE2 packed arithmetic instructions
        • 3.5.1.3 SSE2 logical instructions
        • 3.5.1.4 SSE2 compare instructions
        • 3.5.1.5 SSE2 shuffle and unpack instructions
        • 3.5.1.6 SSE2 conversion instructions
      • 3.5.2 SSE2 SIMD integer instructions
        • 3.5.2.1 SSE2 MMX-like instructions extended to SSE registers
        • 3.5.2.2 SSE2 integer instructions for SSE registers only
    • 3.6 SSE3 instructions
      • 3.6.1 SSE3 SIMD floating-point instructions
      • 3.6.2 SSE3 SIMD integer instructions
    • 3.7 SSSE3 instructions
    • 3.8 SSE4 instructions
    • 3.9 SSE5 derived instructions
      • 3.12.1 AVX-512 foundation
  • 4 Cryptographic instructions
    • 4.1 Intel AES instructions
    • 4.2 RDRAND and RDSEED
    • 4.3 Intel SHA instructions
  • 5 Undocumented instructions
    • 5.1 Undocumented x86 instructions
    • 5.2 Undocumented x87 instructions

x86 integer instructions [ edit ]

This is the full 8086/8088 instruction set of Intel. Most if not all of these instructions are available in 32-bit mode; they just operate on 32-bit registers ( eax , ebx , etc.) and values instead of their 16-bit ( ax , bx , etc.) counterparts. See also x86 assembly language for a quick tutorial for this processor family. The updated instruction set is also grouped according to architecture (i386, i486 ,i686) and more generally is referred to asx86 32 andx86 64 (also known asAMD64).

Original 8086/8088 instructions [ edit ]

Original 8086/8088 instruction set
Instruction Meaning Notes Opcode
AAA ASCII adjust AL after addition used with unpackedbinary coded decimal 0x37
AAD ASCII adjust AX before division 8086/8088 datasheet documents only base 10 version of the AAD instruction (opcode 0xD5 0x0A), but any other base will work. Later Intel's documentation has the generic form too. NEC V20 and V30 (and possibly other NEC V-series CPUs) always use base 10, and ignore the argument, causing a number of incompatibilities 0xD5
AAM ASCII adjust AX after multiplication Only base 10 version (Operand is 0xA) is documented, see notes for AAD 0xD4
AAS ASCII adjust AL after subtraction 0x3F
ADC Add with carry destination := destination + source + carry_flag 0x10…0x15, 0x80/2…0x83/2
ADD Add (1) r/m += r/imm; (2) r += m/imm; 0x00…0x05, 0x80/0…0x83/0
AND Logical AND (1) r/m &= r/imm; (2) r &= m/imm; 0x20…0x25, 0x80/4…0x83/4
CALL Call procedure push eip; eip points to the instruction directly after the call 0x9A, 0xE8, 0xFF/2, 0xFF/3
CBW Convert byte to word 0x98
CLC Clearcarry flag CF = 0; 0xF8
CLD Cleardirection flag DF = 0; 0xFC
CLI Clearinterrupt flag IF = 0; 0xFA
CMC Complement carry flag 0xF5
CMP Compare operands 0x38…0x3D, 0x80/7…0x83/7
CMPSB Compare bytes in memory 0xA6
CMPSW Compare words 0xA7
CWD Convert word to doubleword 0x99
DAA Decimal adjust AL after addition (used with packedbinary coded decimal) 0x27
DAS Decimal adjust AL after subtraction 0x2F
DEC Decrement by 1 0x48…0x4F, 0xFE/1, 0xFF/1
DIV Unsigned divide DX:AX = DX:AX / r/m; resulting DX == remainder 0xF6/6, 0xF7/6
ESC Used withfloating-point unit 0xD8..0xDF
HLT Enter halt state 0xF4
IDIV Signed divide DX:AX = DX:AX / r/m; resulting DX == remainder 0xF6/7, 0xF7/7
IMUL Signed multiply (1) DX:AX = AX * r/m; (2) AX = AL * r/m 0x69, 0x6B (both since 80186), 0xF6/5, 0xF7/5, 0x0FAF (since 80386)
IN Input from port (1) AL = port[imm]; (2) AL = port[DX]; (3) AX = port[imm]; (4) AX = port[DX]; 0xE4, 0xE5, 0xEC, 0xED
INC Increment by 1 0x40…0x47, 0xFE/0, 0xFF/0
INT Call tointerrupt 0xCC, 0xCD
INTO Call to interrupt if overflow 0xCE
IRET Return from interrupt 0xCF
Jcc Jump if condition ( JA, JAE, JB, JBE, JC, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ ) 0x70…0x7F, 0x0F80…0x0F8F (since 80386)
JCXZ Jump if CX is zero 0xE3
JMP Jump 0xE9…0xEB, 0xFF/4, 0xFF/5
LAHF Load FLAGS into AH register 0x9F
LDS Load pointer using DS 0xC5
LEA Load Effective Address 0x8D
LES Load ES with pointer 0xC4
LOCK Assert BUS LOCK# signal (for multiprocessing) 0xF0
LODSB Load string byte if (DF==0) AL = *SI++; else AL = *SI--; 0xAC
LODSW Load string word if (DF==0) AX = *SI++; else AX = *SI--; 0xAD
LOOP/LOOPx Loop control ( LOOPE, LOOPNE, LOOPNZ, LOOPZ ) if (x && --CX) goto lbl; 0xE0…0xE2
MOV Move copies data from one location to another, (1) r/m = r; (2) r = r/m; 0xA0...0xA3
MOVSB Move byte from string to string
if (DF==0) 
  *(byte*)DI++ = *(byte*)SI++; 
else 
  *(byte*)DI-- = *(byte*)SI--;
0xA4
MOVSW Move word from string to string
if (DF==0) 
  *(word*)DI++ = *(word*)SI++; 
else 
  *(word*)DI-- = *(word*)SI--;
0xA5
MUL Unsigned multiply (1) DX:AX = AX * r/m; (2) AX = AL * r/m; 0xF6/4…0xF7/4
NEG Two's complement negation r/m *= -1; 0xF6/3…0xF7/3
NOP No operation opcode equivalent to XCHG EAX, EAX 0x90
NOT Negate the operand,logical NOT r/m ^= -1; 0xF6/2…0xF7/2
OR Logical OR (1) r/m |= r/imm; (2) r |= m/imm; 0x08…0x0D, 0x80…0x83/1
OUT Output to port (1) port[imm] = AL; (2) port[DX] = AL; (3) port[imm] = AX; (4) port[DX] = AX; 0xE6, 0xE7, 0xEE, 0xEF
POP Pop data fromstack r/m = *SP++; POP CS (opcode 0x0F) works only on 8086/8088. Later CPUs use 0x0F as a prefix for newer instructions. 0x07, 0x0F(8086/8088 only), 0x17, 0x1F, 0x58…0x5F, 0x8F/0
POPF PopFLAGS register from stack FLAGS = *SP++; 0x9D
PUSH Push data onto stack *--SP = r/m; 0x06, 0x0E, 0x16, 0x1E, 0x50…0x57, 0x68, 0x6A (both since 80186), 0xFF/6
PUSHF Push FLAGS onto stack *--SP = FLAGS; 0x9C
RCL Rotate left (with carry) 0xC0…0xC1/2 (since 80186), 0xD0…0xD3/2
RCR Rotate right (with carry) 0xC0…0xC1/3 (since 80186), 0xD0…0xD3/3
REPxx Repeat MOVS/STOS/CMPS/LODS/SCAS ( REP, REPE, REPNE, REPNZ, REPZ ) 0xF2, 0xF3
RET Return from procedure Not a real instruction. The assembler will translate these to a RETN or a RETF depending on the memory model of the target system.
RETN Return from near procedure 0xC2, 0xC3
RETF Return from far procedure 0xCA, 0xCB
ROL Rotate left 0xC0…0xC1/0 (since 80186), 0xD0…0xD3/0
ROR Rotate right 0xC0…0xC1/1 (since 80186), 0xD0…0xD3/1
SAHF Store AH into FLAGS 0x9E
SAL Shift Arithmetically left (signed shift left) (1) r/m <<= 1; (2) r/m <<= CL; 0xC0…0xC1/4 (since 80186), 0xD0…0xD3/4
SAR Shift Arithmetically right (signed shift right) (1) (signed) r/m >>= 1; (2) (signed) r/m >>= CL; 0xC0…0xC1/7 (since 80186), 0xD0…0xD3/7
SBB Subtraction with borrow alternative 1-byte encoding of SBB AL, AL is available viaSALC instruction 0x18…0x1D, 0x80…0x83/3
SCASB Compare byte string 0xAE
SCASW Compare word string 0xAF
SHL Shift left (unsigned shift left) 0xC0…0xC1/4 (since 80186), 0xD0…0xD3/4
SHR Shift right (unsigned shift right) 0xC0…0xC1/5 (since 80186), 0xD0…0xD3/5
STC Set carry flag CF = 1; 0xF9
STD Set direction flag DF = 1; 0xFD
STI Set interrupt flag IF = 1; 0xFB
STOSB Store byte in string if (DF==0) *ES:DI++ = AL; else *ES:DI-- = AL; 0xAA
STOSW Store word in string if (DF==0) *ES:DI++ = AX; else *ES:DI-- = AX; 0xAB
SUB Subtraction (1) r/m -= r/imm; (2) r -= m/imm; 0x28…0x2D, 0x80…0x83/5
TEST Logical compare (AND) (1) r/m & r/imm; (2) r & m/imm; 0x84, 0x84, 0xA8, 0xA9, 0xF6/0, 0xF7/0
WAIT Wait until not busy Waits until BUSY# pin is inactive (used withfloating-point unit) 0x9B
XCHG Exchange data r :=: r/m; Aspinlock typically uses xchg as anatomic operation. (coma bug). 0x86, 0x87, 0x91…0x97
XLAT Table look-up translation behaves like MOV AL, [BX+AL] 0xD7
XOR Exclusive OR (1) r/m ^= r/imm; (2) r ^= m/imm; 0x30…0x35, 0x80…0x83/6

Added in specific processors [ edit ]

Added with80186/ 80188 [ edit ]

Instruction Meaning Notes
BOUND Check array index against bounds raises software interrupt 5 if test fails
ENTER Enter stack frame Modifies stack for entry to procedure for high level language. Takes two operands: the amount of storage to be allocated on the stack and the nesting level of the procedure.
INS Input from port to string equivalent to
IN (E)AX, DX
MOV ES:[(E)DI], (E)AX
; adjust (E)DI according to operand size and DF
LEAVE Leave stack frame Releases the local stack storage created by the previous ENTER instruction.
OUTS Output string to port equivalent to
MOV (E)AX, DS:[(E)SI]
OUT DX, (E)AX
; adjust (E)SI according to operand size and DF
POPA Pop all general purpose registers from stack equivalent to
POP DI
POP SI
POP BP
POP AX ; no POP SP here, all it does is ADD SP, 2 (since AX will be overwritten later)
POP BX
POP DX
POP CX
POP AX
PUSHA Push all general purpose registers onto stack equivalent to
PUSH AX
PUSH CX
PUSH DX
PUSH BX
PUSH SP ; The value stored is the initial SP value
PUSH BP
PUSH SI
PUSH DI
PUSH immediate Push an immediate byte/word value onto the stack equivalent to
PUSH 12h
PUSH 1200h
IMUL immediate Signed multiplication of immediate byte/word value equivalent to
IMUL BX,12h
IMUL DX,1200h
IMUL CX, DX, 12h
IMUL BX, SI, 1200h
IMUL DI, word ptr [BX+SI], 12h
IMUL SI, word ptr [BP-4], 1200h
SHL/SHR/SAL/SAR/ROL/ROR/RCL/RCR immediate Rotate/shift bits with an immediate value greater than 1 equivalent to
ROL AX,3
SHR BL,3

Added with80286 [ edit ]

Instruction Meaning Notes
ARPL Adjust RPL field of selector
CLTS Clear task-switched flag in register CR0
LAR Load access rights byte
LGDT Load global descriptor table
LIDT Load interrupt descriptor table
LLDT Load local descriptor table
LMSW Load machine status word
LOADALL Load all CPU registers, including internal ones such as GDT Undocumented, 80286 and 80386 only
LSL Load segment limit
LTR Load task register
SGDT Store global descriptor table
SIDT Store interrupt descriptor table
SLDT Store local descriptor table
SMSW Store machine status word
STR Store task register
VERR Verify a segment for reading
VERW Verify a segment for writing

Added with80386 [ edit ]

Instruction Meaning Notes
BSF Bit scan forward
BSR Bit scan reverse
BT Bit test
BTC Bit test and complement
BTR Bit test and reset
BTS Bit test and set
CDQ Convert double-word to quad-word Sign-extends EAX into EDX, forming the quad-word EDX:EAX. Since (I)DIV uses EDX:EAX as its input, CDQ must be called after setting EAX if EDX is not manually initialized (as in 64/32 division) before (I)DIV.
CMPSD Compare string double-word Compares ES:[(E)DI] with DS:[(E)SI] and increments or decrements both (E)DI and (E)SI, depending on DF; can be prefixed with REP
CWDE Convert word to double-word Unlike CWD, CWDE sign-extends AX to EAX instead of AX to DX:AX
IBTS Insert Bit String discontinued with B1 step of 80386
INSD Input from port to string double-word
IRETx Interrupt return; D suffix means 32-bit return, F suffix means do not generate epilogue code (i.e. LEAVE instruction) Use IRETD rather than IRET in 32-bit situations
JECXZ Jump if ECX is zero
LFS, LGS Load far pointer
LSS Load stack segment
LODSD Load string double-word EAX = *ES:EDI±±; (±± depends on DF, ES cannot be overridden); can be prefixed with REP
LOOPW, LOOP cc W Loop, conditional loop Same as LOOP, LOOP cc for earlier processors
LOOPD, LOOPccD Loop while equal if (cc && --ECX) goto lbl; , cc = Z (ero), E (qual), N on Z ero, N (on) E (qual)
MOV to/from CR/DR/TR Move to/from special registers CR=control registers, DR=debug registers, TR=test registers (up to 80486)
MOVSD Move string double-word *(dword*)ES:EDI±± = (dword*)ESI±±; (±± depends on DF); can be prefixed with REP
MOVSX Move with sign-extension (long)r = (signed char) r/m; and similar
MOVZX Move with zero-extension (long)r = (unsigned char) r/m; and similar
OUTSD Output to port from string double-word port[DX] = *(long*)ESI±±; (±± depends on DF)
POPAD Pop all double-word (32-bit) registers from stack Does not pop register ESP off of stack
POPFD Pop data into EFLAGS register
PUSHAD Push all double-word (32-bit) registers onto stack
PUSHFD Push EFLAGS register onto stack
SCASD Scan string data double-word Compares ES:[(E)DI] with EAX and increments or decrements (E)DI, depending on DF; can be prefixed with REP
SETcc Set byte to one on condition, zero otherwise ( SETA, SETAE, SETB, SETBE, SETC, SETE, SETG, SETGE, SETL, SETLE, SETNA, SETNAE, SETNB, SETNBE, SETNC, SETNE, SETNG, SETNGE, SETNL, SETNLE, SETNO, SETNP, SETNS, SETNZ, SETO, SETP, SETPE, SETPO, SETS, SETZ )
SHLD Shift left double-word
SHRD Shift right double-word r1 = r1>>CL ∣ r2<<(32-CL); Instead of CL, immediate 1 can be used
STOSD Store string double-word *ES:EDI±± = EAX; (±± depends on DF, ES cannot be overridden); can be prefixed with REP
XBTS Extract Bit String discontinued with B1 step of 80386

Added with80486 [ edit ]

Instruction Meaning Notes
BSWAP Byte Swap r = r<<24 | r<<8&0x00FF0000 | r>>8&0x0000FF00 | r>>24; Only defined for 32-bit registers. Usually used to change between little endian and big endian representations. When used with 16-bit registers produces various different results on 486,586, andBochs/ QEMU .
CMPXCHG atomic CoMPare and eXCHanGe SeeCompare-and-swap / on later 80386 as undocumented opcode available
INVD Invalidate Internal Caches Flush internal caches
INVLPG InvalidateTLB Entry Invalidate TLB Entry for page that contains data specified
WBINVD Write Back and Invalidate Cache Writes back all modified cache lines in the processor's internal cache to main memory and invalidates the internal caches.
XADD eXchange and ADD Exchanges the first operand with the second operand, then loads the sum of the two values into the destination operand.

Added withPentium [ edit ]

Instruction Meaning Notes
CPUID CPU IDentification Returns data regarding processor identification and features, and returns data to the EAX, EBX, ECX, and EDX registers. Instruction functions specified by the EAX register.This was also added to later80486 processors
CMPXCHG8B CoMPare and eXCHanGe 8 bytes Compare EDX:EAX with m64. If equal, set ZF and load ECX:EBX into m64. Else, clear ZF and load m64 into EDX:EAX.
RDMSR ReaD from Model-specific register LoadMSR specified by ECX into EDX:EAX
RDTSC ReaD Time Stamp Counter Returns the number of processor ticks since the processor being "ONLINE" (since the last power on of system)
WRMSR WRite to Model-Specific Register Write the value in EDX:EAX toMSR specified by ECX
Resume from System Management Mode This was introduced by the i386SL and later and is also in the i486SL and later. Resumes from System Management Mode (SMM)

Added with Pentium MMX [ edit ]

Instruction Meaning Notes
RDPMC Read the PMC [Performance Monitoring Counter] Specified in the ECX register into registers EDX:EAX

Also MMX registers and MMX support instructions were added. They are usable for both integer and floating point operations, see below.

Added withAMD K6 [ edit ]

Instruction Meaning Notes
SYSCALL functionally equivalent to SYSENTER
SYSRET functionally equivalent to SYSEXIT

AMD changed the CPUID detection bit for this feature from the K6-II on.

Added withPentium Pro [ edit ]

Instruction Meaning Notes
CMOVcc Conditional move (CMOVA, CMOVAE, CMOVB, CMOVBE, CMOVC, CMOVE, CMOVG, CMOVGE, CMOVL, CMOVLE, CMOVNA, CMOVNAE, CMOVNB, CMOVNBE, CMOVNC, CMOVNE, CMOVNG, CMOVNGE, CMOVNL, CMOVNLE, CMOVNO, CMOVNP, CMOVNS, CMOVNZ, CMOVO, CMOVP, CMOVPE, CMOVPO, CMOVS, CMOVZ)
UD2 Undefined Instruction Generates an invalid opcode. This instruction is provided for software testing to explicitly generate an invalid opcode. The opcode for this instruction is reserved for this purpose.

Added withPentium II [ edit ]

Instruction Meaning Notes
SYSENTER SYStem call ENTER Sometimes called the Fast System Call instruction, this instruction was intended to increase the performance of operating system calls. Note that on the Pentium Pro, theCPUID instruction incorrectly reports these instructions as available.
SYSEXIT SYStem call EXIT

Added withSSE [ edit ]

Instruction Opcode Meaning Notes
NOP r/m16 0F 1F /0 Multi-byte no-operation instruction.
NOP r/m32
PREFETCHT0 0F 18 /1 Prefetch Data from Address Prefetch into all cache levels
PREFETCHT1 0F 18 /2 Prefetch Data from Address Prefetch into all cache levels EXCEPTL1
PREFETCHT2 0F 18 /3 Prefetch Data from Address Prefetch into all cache levels EXCEPT L1 and L2
PREFETCHNTA 0F 18 /0 Prefetch Data from Address Prefetch to non-temporal cache structure, minimizing cache pollution.
SFENCE 0F AE F8 Store Fence Processor hint to make sure all store operations that took place prior to the SFENCE call are globally visible

Added withSSE2 [ edit ]

Instruction Opcode Meaning Notes
CLFLUSH m8 0F AE /7 Cache Line Flush Invalidates the cache line that contains the linear address specified with the source operand from all levels of the processor cache hierarchy
LFENCE 0F AE E8 Load Fence Serializes load operations.
MFENCE 0F AE F0 Memory Fence Performs a serializing operation on all load and store instructions that were issued prior the MFENCE instruction.
MOVNTI m32, r32 0F C3 /r Move Doubleword Non-Temporal Move doubleword from r32 to m32, minimizing pollution in the cache hierarchy.
PAUSE F3 90 Spin Loop Hint Provides a hint to the processor that the following code is a spin loop, for cacheability

Added withSSE3 [ edit ]

Instruction Meaning Notes
MONITOR EAX, ECX, EDX Setup Monitor Address Sets up a linear address range to be monitored by hardware and activates the monitor.
MWAIT EAX, ECX Monitor Wait Processor hint to stop instruction execution and enter an implementation-dependent optimized state until occurrence of a class of events.

Added withSSE4.2 [ edit ]

Instruction Opcode Meaning Notes
CRC32 r32, r/m8 F2 0F 38 F0 /r Accumulate CRC32 ComputesCRC value using the CRC-32C (Castagnoli) polynomial 0x11EDC6F41 (normal form 0x1EDC6F41). This is the polynomial used in iSCSI. In contrast to the more popular one used in Ethernet, its parity is even, and it can thus detect any error with an odd number of changed bits.
CRC32 r32, r/m8 F2 REX 0F 38 F0 /r
CRC32 r32, r/m16 F2 0F 38 F1 /r
CRC32 r32, r/m32 F2 0F 38 F1 /r
CRC32 r64, r/m8 F2 REX.W 0F 38 F0 /r
CRC32 r64, r/m64 F2 REX.W 0F 38 F1 /r
CRC32 r32, r/m8 F2 0F 38 F0 /r

Added withx86-64 [ edit ]

Instruction Meaning Notes
CDQE Sign extend EAX into RAX
CQO Sign extend RAX into RDX:RAX
CMPSQ CoMPare String Quadword
CMPXCHG16B CoMPare and eXCHanGe 16 Bytes
IRETQ 64-bit Return from Interrupt
JRCXZ Jump if RCX is zero
LODSQ LoaD String Quadword
MOVSXD MOV with Sign Extend 32-bit to 64-bit
POPFQ POP RFLAGS Register
PUSHFQ PUSH RFLAGS Register
RDTSCP ReaD Time Stamp Counter and Processor ID
SCASQ SCAn String Quadword
STOSQ STOre String Quadword
SWAPGS Exchange GS base with KernelGSBase MSR

Added withAMD-V [ edit ]

Instruction Meaning Notes Opcode
CLGI Clear Global Interrupt Flag Clears the GIF 0x0F 0x01 0xDD
INVLPGA Invalidate TLB entry in a specified ASID Invalidates the TLB mapping for the virtual page specified in RAX and the ASID specified in ECX. 0x0F 0x01 0xDF
MOV(CRn) Move to or from control registers Moves 32- or 64-bit contents to control register and vice versa. 0x0F 0x22 or 0x0F 0x20
MOV(DRn) Move to or from debug registers Moves 32- or 64-bit contents to control register and vice versa. 0x0F 0x21 or 0x0F 0x23
SKINIT Secure Init and Jump with Attestation Verifiable startup of trusted software based on secure hash comparison 0x0F 0x01 0xDE
STGI Set Global Interrupt Flag Sets the GIF. 0x0F 0x01 0xDC
VMLOAD Load state From VMCB Loads a subset of processor state from the VMCB specified by the physical address in the RAX register. 0x0F 0x01 0xDA
VMMCALL Call VMM Used exclusively to communicate with VMM 0x0F 0x01 0xD9
VMRUN Run virtual machine Performs a switch to the guest OS. 0x0F 0x01 0xD8
VMSAVE Save state To VMCB Saves additional guest state to VMCB. 0x0F 0x01 0xDB

Added withIntel VT-x [ edit ]

Instruction Meaning Notes Opcode
INVEPT Invalidate Translations Derived from EPT Invalidates EPT-derived entries in the TLBs and paging-structure caches. 0x66 0x0F 0x38 0x80
INVVPID Invalidate Translations Based on VPID Invalidates entries in the TLBs and paging-structure caches based on VPID. 0x66 0x0F 0x38 0x80
VMFUNC Invoke VM function Invoke VM function specified in EAX. 0x0F 0x01 0xD4
VMPTRLD Load Pointer to Virtual-Machine Control Structure Loads the current VMCS pointer from memory. 0x0F 0xC7/6
VMPTRST Store Pointer to Virtual-Machine Control Structure Stores the current-VMCS pointer into a specified memory address. The operand of this instruction is always 64 bits and is always in memory. 0x0F 0xC7/7
VMCLEAR Clear Virtual-Machine Control Structure Writes any cached data to the VMCS 0x66 0x0F 0xC7/6
VMREAD Read Field from Virtual-Machine Control Structure Reads out a field in the VMCS 0x0F 0x78
VMWRITE Write Field to Virtual-Machine Control Structure Modifies a field in the VMCS 0x0F 0x79
VMCALL Call to VM Monitor Calls VM Monitor function from Guest System 0x0F 0x01 0xC1
VMLAUNCH Launch Virtual Machine Launch virtual machine managed by current VMCS 0x0F 0x01 0xC2
VMRESUME Resume Virtual Machine Resume virtual machine managed by current VMCS 0x0F 0x01 0xC3
VMXOFF Leave VMX Operation Stops hardware supported virtualisation environment 0x0F 0x01 0xC4
VMXON Enter VMX Operation Enters hardware supported virtualisation environment 0xF3 0x0F 0xC7/6

Added withABM [ edit ]

LZCNT ,POPCNT (POPulation CouNT) – advanced bit manipulation

Added withBMI1 [ edit ]

ANDN, BEXTR, BLSI, BLSMSK, BLSR, TZCNT

Added withBMI2 [ edit ]

BZHI, MULX, PDEP, PEXT, RORX, SARX, SHRX, SHLX

Added withTBM [ edit ]

AMD introduced TBM together with BMI1 in itsPiledriver line of processors; later AMD Jaguar and Zen-based processors do not support TBM.No Intel processors (as of 2020) support TBM.

Instruction Equivalent C expression
BEXTR Bit field extract (with immediate) (src >> start) & ((1 << len) - 1)
BLCFILL Fill from lowest clear bit x & (x + 1)
BLCI Isolate lowest clear bit x | ~(x + 1)
BLCIC Isolate lowest clear bit and complement ~x & (x + 1)
BLCMSK Mask from lowest clear bit x ^ (x + 1)
BLCS Set lowest clear bit x | (x + 1)
BLSFILL Fill from lowest set bit x | (x - 1)
BLSIC Isolate lowest set bit and complement ~x | (x - 1)
T1MSKC Inverse mask from trailing ones ~x | (x + 1)
TZMSK Mask from trailing zeros ~x & (x - 1)

Added with CLMUL instruction set [ edit ]

Instruction Opcode Description
PCLMULQDQ xmmreg,xmmrm,imm 66 0f 3a 44 /r ib Perform a carry-less multiplication of two 64-bit polynomials over the finite field GF (2 k ).
PCLMULLQLQDQ xmmreg,xmmrm 66 0f 3a 44 /r 00 Multiply the low halves of the two registers.
PCLMULHQLQDQ xmmreg,xmmrm 66 0f 3a 44 /r 01 Multiply the high half of the destination register by the low half of the source register.
PCLMULLQHQDQ xmmreg,xmmrm 66 0f 3a 44 /r 10 Multiply the low half of the destination register by the high half of the source register.
PCLMULHQHQDQ xmmreg,xmmrm 66 0f 3a 44 /r 11 Multiply the high halves of the two registers.

Added withIntel ADX [ edit ]

Instruction Description
ADCX Adds two unsigned integers plus carry, reading the carry from the carry flag and if necessary setting it there. Does not affect other flags than the carry.
ADOX Adds two unsigned integers plus carry, reading the carry from the overflow flag and if necessary setting it there. Does not affect other flags than the overflow.

x87 floating-point instructions [ edit ]

Original8087 instructions [ edit ]

Instruction Meaning Notes
F2XM1 more precise than for x close to zero
FABS Absolute value
FADD Add
FADDP Add and pop
FBLD Load BCD
FBSTP Store BCD and pop
FCHS Change sign
FCLEX Clear exceptions
FCOM Compare
FCOMP Compare and pop
FCOMPP Compare and pop twice
FDECSTP Decrement floating point stack pointer
FDISI Disable interrupts 8087 only, otherwise FNOP
FDIV Divide Pentium FDIV bug
FDIVP Divide and pop
FDIVR Divide reversed
FDIVRP Divide reversed and pop
FENI Enable interrupts 8087 only, otherwise FNOP
FFREE Free register
FIADD Integer add
FICOM Integer compare
FICOMP Integer compare and pop
FIDIV Integer divide
FIDIVR Integer divide reversed
FILD Load integer
FIMUL Integer multiply
FINCSTP Increment floating point stack pointer
FINIT Initialize floating point processor
FIST Store integer
FISTP Store integer and pop
FISUB Integer subtract
FISUBR Integer subtract reversed
FLD Floating point load
FLD1 Load 1.0 onto stack
FLDCW Load control word
FLDENV Load environment state
FLDENVW Load environment state, 16-bit
FLDL2E Load log 2 (e) onto stack
FLDL2T Load log 2 (10) onto stack
FLDLG2 Load log 10 (2) onto stack
FLDLN2 Load ln(2) onto stack
FLDPI Load π onto stack
FLDZ Load 0.0 onto stack
FMUL Multiply
FMULP Multiply and pop
FNCLEX Clear exceptions, no wait
FNDISI Disable interrupts, no wait 8087 only, otherwise FNOP
FNENI Enable interrupts, no wait 8087 only, otherwise FNOP
FNINIT Initialize floating point processor, no wait
FNOP No operation
FNSAVE Save FPU state, no wait, 8-bit
FNSAVEW Save FPU state, no wait, 16-bit
FNSTCW Store control word, no wait
FNSTENV Store FPU environment, no wait
FNSTENVW Store FPU environment, no wait, 16-bit
FNSTSW Store status word, no wait
FPATAN Partial arctangent
FPREM Partial remainder
FPTAN Partial tangent
FRNDINT Round to integer
FRSTOR Restore saved state
FRSTORW Restore saved state Perhaps not actually available in 8087
FSAVE Save FPU state
FSAVEW Save FPU state, 16-bit
FSCALE Scale by factor of 2
FSQRT Square root
FST Floating point store
FSTCW Store control word
FSTENV Store FPU environment
FSTENVW Store FPU environment, 16-bit
FSTP Store and pop
FSTSW Store status word
FSUB Subtract
FSUBP Subtract and pop
FSUBR Reverse subtract
FSUBRP Reverse subtract and pop
FTST Test for zero
FWAIT Wait while FPU is executing
FXAM Examine condition flags
FXCH Exchange registers
FXTRACT Extract exponent and significand
FYL2X y · log 2 x if y = log b 2 , then the base- b logarithm is computed
FYL2XP1 y · log 2 ( x +1) more precise than log 2 z if x is close to zero

Added in specific processors [ edit ]

Added with80287 [ edit ]

Instruction Meaning Notes
FSETPM Set protected mode 80287 only, otherwise FNOP

Added with80387 [ edit ]

Instruction Meaning Notes
FCOS Cosine
FLDENVD Load environment state, 32-bit
FSAVED Save FPU state, 32-bit
FPREM1 Partial remainder Computes IEEE remainder
FRSTORD Restore saved state, 32-bit
FSIN Sine
FSINCOS Sine and cosine
FSTENVD Store FPU environment, 32-bit
FUCOM Unordered compare
FUCOMP Unordered compare and pop
FUCOMPP Unordered compare and pop twice

Added withPentium Pro [ edit ]

  • FCMOV variants: FCMOVB, FCMOVBE, FCMOVE, FCMOVNB, FCMOVNBE, FCMOVNE, FCMOVNU, FCMOVU
  • FCOMI variants: FCOMI, FCOMIP, FUCOMI, FUCOMIP

Added withSSE [ edit ]

FXRSTOR, FXSAVE

These are also supported on later Pentium IIs which do not contain SSE support

Added with SSE3 [ edit ]

FISTTP (x87 to integer conversion with truncation regardless of status word)

SIMD instructions [ edit ]

MMX instructions [ edit ]

MMX instructions operate on the mm registers, which are 64 bits wide. They are shared with the FPU registers.

Original MMX instructions [ edit ]

Added withPentium MMX

Instruction Opcode Meaning Notes
EMMS 0F 77 Empty MMX Technology State Marks all x87 FPU registers for use by FPU
MOVD mm, r/m32 0F 6E /r Move doubleword
MOVD r/m32, mm 0F 7E /r Move doubleword
MOVQ mm/m64, mm 0F 7F /r Move quadword
MOVQ mm, mm/m64 0F 6F /r Move quadword
MOVQ mm, r/m64 REX.W + 0F 6E /r Move quadword
MOVQ r/m64, mm REX.W + 0F 7E /r Move quadword
PACKSSDW mm1, mm2/m64 0F 6B /r Pack doublewords to words (signed with saturation)
PACKSSWB mm1, mm2/m64 0F 63 /r Pack words to bytes (signed with saturation)
PACKUSWB mm, mm/m64 0F 67 /r Pack words to bytes (unsigned with saturation)
PADDB mm, mm/m64 0F FC /r Add packed byte integers
PADDW mm, mm/m64 0F FD /r Add packed word integers
PADDD mm, mm/m64 0F FE /r Add packed doubleword integers
PADDQ mm, mm/m64 0F D4 /r Add packed quadword integers
PADDSB mm, mm/m64 0F EC /r Add packed signed byte integers and saturate
PADDSW mm, mm/m64 0F ED /r Add packed signed word integers and saturate
PADDUSB mm, mm/m64 0F DC /r Add packed unsigned byte integers and saturate
PADDUSW mm, mm/m64 0F DD /r Add packed unsigned word integers and saturate
PAND mm, mm/m64 0F DB /r Bitwise AND
PANDN mm, mm/m64 0F DF /r Bitwise AND NOT
POR mm, mm/m64 0F EB /r Bitwise OR
PXOR mm, mm/m64 0F EF /r Bitwise XOR
PCMPEQB mm, mm/m64 0F 74 /r Compare packed bytes for equality
PCMPEQW mm, mm/m64 0F 75 /r Compare packed words for equality
PCMPEQD mm, mm/m64 0F 76 /r Compare packed doublewords for equality
PCMPGTB mm, mm/m64 0F 64 /r Compare packed signed byte integers for greater than
PCMPGTW mm, mm/m64 0F 65 /r Compare packed signed word integers for greater than
PCMPGTD mm, mm/m64 0F 66 /r Compare packed signed doubleword integers for greater than
PMADDWD mm, mm/m64 0F F5 /r Multiply packed words, add adjacent doubleword results
PMULHW mm, mm/m64 0F E5 /r Multiply packed signed word integers, store high 16 bits of results
PMULLW mm, mm/m64 0F D5 /r Multiply packed signed word integers, store low 16 bits of results
PSLLW mm1, imm8 0F 71 /6 ib Shift left words, shift in zeros
PSLLW mm, mm/m64 0F F1 /r Shift left words, shift in zeros
PSLLD mm, imm8 0F 72 /6 ib Shift left doublewords, shift in zeros
PSLLD mm, mm/m64 0F F2 /r Shift left doublewords, shift in zeros
PSLLQ mm, imm8 0F 73 /6 ib Shift left quadword, shift in zeros
PSLLQ mm, mm/m64 0F F3 /r Shift left quadword, shift in zeros
PSRAD mm, imm8 0F 72 /4 ib Shift right doublewords, shift in sign bits
PSRAD mm, mm/m64 0F E2 /r Shift right doublewords, shift in sign bits
PSRAW mm, imm8 0F 71 /4 ib Shift right words, shift in sign bits
PSRAW mm, mm/m64 0F E1 /r Shift right words, shift in sign bits
PSRLW mm, imm8 0F 71 /2 ib Shift right words, shift in zeros
PSRLW mm, mm/m64 0F D1 /r Shift right words, shift in zeros
PSRLD mm, imm8 0F 72 /2 ib Shift right doublewords, shift in zeros
PSRLD mm, mm/m64 0F D2 /r Shift right doublewords, shift in zeros
PSRLQ mm, imm8 0F 73 /2 ib Shift right quadword, shift in zeros
PSRLQ mm, mm/m64 0F D3 /r Shift right quadword, shift in zeros
PSUBB mm, mm/m64 0F F8 /r Subtract packed byte integers
PSUBW mm, mm/m64 0F F9 /r Subtract packed word integers
PSUBD mm, mm/m64 0F FA /r Subtract packed doubleword integers
PSUBSB mm, mm/m64 0F E8 /r Subtract signed packed bytes with saturation
PSUBSW mm, mm/m64 0F E9 /r Subtract signed packed words with saturation
PSUBUSB mm, mm/m64 0F D8 /r Subtract unsigned packed bytes with saturation
PSUBUSW mm, mm/m64 0F D9 /r Subtract unsigned packed words with saturation
PUNPCKHBW mm, mm/m64 0F 68 /r Unpack and interleave high-order bytes
PUNPCKHWD mm, mm/m64 0F 69 /r Unpack and interleave high-order words
PUNPCKHDQ mm, mm/m64 0F 6A /r Unpack and interleave high-order doublewords
PUNPCKLBW mm, mm/m32 0F 60 /r Unpack and interleave low-order bytes
PUNPCKLWD mm, mm/m32 0F 61 /r Unpack and interleave low-order words
PUNPCKLDQ mm, mm/m32 0F 62 /r Unpack and interleave low-order doublewords

MMX instructions added in specific processors [ edit ]

EMMI instructions [ edit ]

Added with6x86MX fromCyrix, deprecated now

PAVEB, PADDSIW, PMAGW, PDISTIB, PSUBSIW, PMVZB, PMULHRW, PMVNZB, PMVLZB, PMVGEZB, PMULHRIW, PMACHRIW

MMX instructions added withMMX+ and SSE [ edit ]

The following MMX instruction were added with SSE. They are also available on theAthlon under the name MMX+.

Instruction Opcode Meaning
MASKMOVQ mm1, mm2 0F F7 /r Masked Move of Quadword
MOVNTQ m64, mm 0F E7 /r Move Quadword Using Non-Temporal Hint
PSHUFW mm1, mm2/m64, imm8 0F 70 /r ib Shuffle Packed Words
PINSRW mm, r32/m16, imm8 0F C4 /r Insert Word
PEXTRW reg, mm, imm8 0F C5 /r Extract Word
PMOVMSKB reg, mm 0F D7 /r Move Byte Mask
PMINUB mm1, mm2/m64 0F DA /r Minimum of Packed Unsigned Byte Integers
PMAXUB mm1, mm2/m64 0F DE /r Maximum of Packed Unsigned Byte Integers
PAVGB mm1, mm2/m64 0F E0 /r Average Packed Integers
PAVGW mm1, mm2/m64 0F E3 /r Average Packed Integers
PMULHUW mm1, mm2/m64 0F E4 /r Multiply Packed Unsigned Integers and Store High Result
PMINSW mm1, mm2/m64 0F EA /r Minimum of Packed Signed Word Integers
PMAXSW mm1, mm2/m64 0F EE /r Maximum of Packed Signed Word Integers
PSADBW mm1, mm2/m64 0F F6 /r Compute Sum of Absolute Differences

MMX instructions added with SSE2 [ edit ]

The following MMX instructions were added with SSE2:

Instruction Opcode Meaning
PSUBQ mm1, mm2/m64 0F FB /r Subtract quadword integer
PMULUDQ mm1, mm2/m64 0F F4 /r Multiply unsigned doubleword integer

MMX instructions added with SSSE3 [ edit ]

Instruction Opcode Meaning
PSIGNB mm1, mm2/m64 0F 38 08 /r Negate/zero/preserve packed byte integers depending on corresponding sign
PSIGNW mm1, mm2/m64 0F 38 09 /r Negate/zero/preserve packed word integers depending on corresponding sign
PSIGND mm1, mm2/m64 0F 38 0A /r Negate/zero/preserve packed doubleword integers depending on corresponding sign
PSHUFB mm1, mm2/m64 0F 38 00 /r Shuffle bytes
PMULHRSW mm1, mm2/m64 0F 38 0B /r Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits
PMADDUBSW mm1, mm2/m64 0F 38 04 /r Multiply signed and unsigned bytes, add horizontal pair of signed words, pack saturated signed-words
PHSUBW mm1, mm2/m64 0F 38 05 /r Subtract and pack 16-bit signed integers horizontally
PHSUBSW mm1, mm2/m64 0F 38 07 /r Subtract and pack 16-bit signed integer horizontally with saturation
PHSUBD mm1, mm2/m64 0F 38 06 /r Subtract and pack 32-bit signed integers horizontally
PHADDSW mm1, mm2/m64 0F 38 03 /r Add and pack 16-bit signed integers horizontally, pack saturated integers to mm1.
PHADDW mm1, mm2/m64 0F 38 01 /r Add and pack 16-bit integers horizontally
PHADDD mm1, mm2/m64 0F 38 02 /r Add and pack 32-bit integers horizontally
PALIGNR mm1, mm2/m64, imm8 0F 3A 0F /r ib Concatenate destination and source operands, extract byte-aligned result shifted to the right
PABSB mm1, mm2/m64 0F 38 1C /r Compute the absolute value of bytes and store unsigned result
PABSW mm1, mm2/m64 0F 38 1D /r Compute the absolute value of 16-bit integers and store unsigned result
PABSD mm1, mm2/m64 0F 38 1E /r Compute the absolute value of 32-bit integers and store unsigned result

3DNow! instructions [ edit ]

Added withK6-2

FEMMS, PAVGUSB, PF2ID, PFACC, PFADD, PFCMPEQ, PFCMPGE, PFCMPGT, PFMAX, PFMIN, PFMUL, PFRCP, PFRCPIT1, PFRCPIT2, PFRSQIT1, PFRSQRT, PFSUB, PFSUBR, PI2FD, PMULHRW, PREFETCH, PREFETCHW

3DNow!+ instructions [ edit ]

Added withAthlon andK6-2+ [ edit ]

PF2IW, PFNACC, PFPNACC, PI2FW, PSWAPD

Added withGeode GX [ edit ]

PFRSQRTV, PFRCPV

SSE instructions [ edit ]

Added withPentium III

SSE instructions operate on xmm registers, which are 128 bit wide.

SSE consists of the following SSE SIMD floating-point instructions:

Instruction Opcode Meaning
ANDPS* xmm1, xmm2/m128 0F 54 /r Bitwise Logical AND of Packed Single-Precision Floating-Point Values
ANDNPS* xmm1, xmm2/m128 0F 55 /r Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
ORPS* xmm1, xmm2/m128 0F 56 /r Bitwise Logical OR of Single-Precision Floating-Point Values
XORPS* xmm1, xmm2/m128 0F 57 /r Bitwise Logical XOR for Single-Precision Floating-Point Values
MOVUPS xmm1, xmm2/m128 0F 10 /r Move Unaligned Packed Single-Precision Floating-Point Values
MOVSS xmm1, xmm2/m32 F3 0F 10 /r Move Scalar Single-Precision Floating-Point Values
MOVUPS xmm2/m128, xmm1 0F 11 /r Move Unaligned Packed Single-Precision Floating-Point Values
MOVSS xmm2/m32, xmm1 F3 0F 11 /r Move Scalar Single-Precision Floating-Point Values
MOVLPS xmm, m64 0F 12 /r Move Low Packed Single-Precision Floating-Point Values
MOVHLPS xmm1, xmm2 0F 12 /r Move Packed Single-Precision Floating-Point Values High to Low
MOVLPS m64, xmm 0F 13 /r Move Low Packed Single-Precision Floating-Point Values
UNPCKLPS xmm1, xmm2/m128 0F 14 /r Unpack and Interleave Low Packed Single-Precision Floating-Point Values
UNPCKHPS xmm1, xmm2/m128 0F 15 /r Unpack and Interleave High Packed Single-Precision Floating-Point Values
MOVHPS xmm, m64 0F 16 /r Move High Packed Single-Precision Floating-Point Values
MOVLHPS xmm1, xmm2 0F 16 /r Move Packed Single-Precision Floating-Point Values Low to High
MOVHPS m64, xmm 0F 17 /r Move High Packed Single-Precision Floating-Point Values
MOVAPS xmm1, xmm2/m128 0F 28 /r Move Aligned Packed Single-Precision Floating-Point Values
MOVAPS xmm2/m128, xmm1 0F 29 /r Move Aligned Packed Single-Precision Floating-Point Values
MOVNTPS m128, xmm1 0F 2B /r Move Aligned Four Packed Single-FP Non Temporal
MOVMSKPS reg, xmm 0F 50 /r Extract Packed Single-Precision Floating-Point 4-bit Sign Mask. The upper bits of the register are filled with zeros.
CVTPI2PS xmm, mm/m64 0F 2A /r Convert Packed Dword Integers to Packed Single-Precision FP Values
CVTSI2SS xmm, r/m32 F3 0F 2A /r Convert Dword Integer to Scalar Single-Precision FP Value
CVTSI2SS xmm, r/m64 F3 REX.W 0F 2A /r Convert Qword Integer to Scalar Single-Precision FP Value
MOVNTPS m128, xmm 0F 2B /r Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint
CVTTPS2PI mm, xmm/m64 0F 2C /r Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers
CVTTSS2SI r32, xmm/m32 F3 0F 2C /r Convert with Truncation Scalar Single-Precision FP Value to Dword Integer
CVTTSS2SI r64, xmm1/m32 F3 REX.W 0F 2C /r Convert with Truncation Scalar Single-Precision FP Value to Qword Integer
CVTPS2PI mm, xmm/m64 0F 2D /r Convert Packed Single-Precision FP Values to Packed Dword Integers
CVTSS2SI r32, xmm/m32 F3 0F 2D /r Convert Scalar Single-Precision FP Value to Dword Integer
CVTSS2SI r64, xmm1/m32 F3 REX.W 0F 2D /r Convert Scalar Single-Precision FP Value to Qword Integer
UCOMISS xmm1, xmm2/m32 0F 2E /r Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS
COMISS xmm1, xmm2/m32 0F 2F /r Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS
SQRTPS xmm1, xmm2/m128 0F 51 /r Compute Square Roots of Packed Single-Precision Floating-Point Values
SQRTSS xmm1, xmm2/m32 F3 0F 51 /r Compute Square Root of Scalar Single-Precision Floating-Point Value
RSQRTPS xmm1, xmm2/m128 0F 52 /r Compute Reciprocal of Square Root of Packed Single-Precision Floating-Point Value
RSQRTSS xmm1, xmm2/m32 F3 0F 52 /r Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point Value
RCPPS xmm1, xmm2/m128 0F 53 /r Compute Reciprocal of Packed Single-Precision Floating-Point Values
RCPSS xmm1, xmm2/m32 F3 0F 53 /r Compute Reciprocal of Scalar Single-Precision Floating-Point Values
ADDPS xmm1, xmm2/m128 0F 58 /r Add Packed Single-Precision Floating-Point Values
ADDSS xmm1, xmm2/m32 F3 0F 58 /r Add Scalar Single-Precision Floating-Point Values
MULPS xmm1, xmm2/m128 0F 59 /r Multiply Packed Single-Precision Floating-Point Values
MULSS xmm1, xmm2/m32 F3 0F 59 /r Multiply Scalar Single-Precision Floating-Point Values
SUBPS xmm1, xmm2/m128 0F 5C /r Subtract Packed Single-Precision Floating-Point Values
SUBSS xmm1, xmm2/m32 F3 0F 5C /r Subtract Scalar Single-Precision Floating-Point Values
MINPS xmm1, xmm2/m128 0F 5D /r Return Minimum Packed Single-Precision Floating-Point Values
MINSS xmm1, xmm2/m32 F3 0F 5D /r Return Minimum Scalar Single-Precision Floating-Point Values
DIVPS xmm1, xmm2/m128 0F 5E /r Divide Packed Single-Precision Floating-Point Values
DIVSS xmm1, xmm2/m32 F3 0F 5E /r Divide Scalar Single-Precision Floating-Point Values
MAXPS xmm1, xmm2/m128 0F 5F /r Return Maximum Packed Single-Precision Floating-Point Values
MAXSS xmm1, xmm2/m32 F3 0F 5F /r Return Maximum Scalar Single-Precision Floating-Point Values
LDMXCSR m32 0F AE /2 Load MXCSR Register State
STMXCSR m32 0F AE /3 Store MXCSR Register State
CMPPS xmm1, xmm2/m128, imm8 0F C2 /r ib Compare Packed Single-Precision Floating-Point Values
CMPSS xmm1, xmm2/m32, imm8 F3 0F C2 /r ib Compare Scalar Single-Precision Floating-Point Values
SHUFPS xmm1, xmm2/m128, imm8 0F C6 /r ib Shuffle Packed Single-Precision Floating-Point Values
  • The floating point single bitwise operations ANDPS, ANDNPS, ORPS and XORPS produce the same result as the SSE2 integer (PAND, PANDN, POR, PXOR) and double ones (ANDPD, ANDNPD, ORPD, XORPD), but can introduce extra latency for domain changes when applied values of the wrong type.

SSE2 instructions [ edit ]

Added withPentium 4

SSE2 SIMD floating-point instructions [ edit ]

SSE2 data movement instructions [ edit ]

Instruction Opcode Meaning
MOVAPD xmm1, xmm2/m128 66 0F 28 /r Move Aligned Packed Double-Precision Floating-Point Values
MOVAPD xmm2/m128, xmm1 66 0F 29 /r Move Aligned Packed Double-Precision Floating-Point Values
MOVNTPD m128, xmm1 66 0F 2B /r Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
MOVHPD xmm1, m64 66 0F 16 /r Move High Packed Double-Precision Floating-Point Value
MOVHPD m64, xmm1 66 0F 17 /r Move High Packed Double-Precision Floating-Point Value
MOVLPD xmm1, m64 66 0F 12 /r Move Low Packed Double-Precision Floating-Point Value
MOVLPD m64, xmm1 66 0F 13/r Move Low Packed Double-Precision Floating-Point Value
MOVUPD xmm1, xmm2/m128 66 0F 10 /r Move Unaligned Packed Double-Precision Floating-Point Values
MOVUPD xmm2/m128, xmm1 66 0F 11 /r Move Unaligned Packed Double-Precision Floating-Point Values
MOVMSKPD reg, xmm 66 0F 50 /r Extract Packed Double-Precision Floating-Point Sign Mask
MOVSD* xmm1, xmm2/m64 F2 0F 10 /r Move or Merge Scalar Double-Precision Floating-Point Value
MOVSD xmm1/m64, xmm2 F2 0F 11 /r Move or Merge Scalar Double-Precision Floating-Point Value

SSE2 packed arithmetic instructions [ edit ]

Instruction Opcode Meaning
ADDPD xmm1, xmm2/m128 66 0F 58 /r Add Packed Double-Precision Floating-Point Values
ADDSD xmm1, xmm2/m64 F2 0F 58 /r Add Low Double-Precision Floating-Point Value
DIVPD xmm1, xmm2/m128 66 0F 5E /r Divide Packed Double-Precision Floating-Point Values
DIVSD xmm1, xmm2/m64 F2 0F 5E /r Divide Scalar Double-Precision Floating-Point Value
MAXPD xmm1, xmm2/m128 66 0F 5F /r Maximum of Packed Double-Precision Floating-Point Values
MAXSD xmm1, xmm2/m64 F2 0F 5F /r Return Maximum Scalar Double-Precision Floating-Point Value
MINPD xmm1, xmm2/m128 66 0F 5D /r Minimum of Packed Double-Precision Floating-Point Values
MINSD xmm1, xmm2/m64 F2 0F 5D /r Return Minimum Scalar Double-Precision Floating-Point Value
MULPD xmm1, xmm2/m128 66 0F 59 /r Multiply Packed Double-Precision Floating-Point Values
MULSD xmm1,xmm2/m64 F2 0F 59 /r Multiply Scalar Double-Precision Floating-Point Value
SQRTPD xmm1, xmm2/m128 66 0F 51 /r Square Root of Double-Precision Floating-Point Values
SQRTSD xmm1,xmm2/m64 F2 0F 51/r Compute Square Root of Scalar Double-Precision Floating-Point Value
SUBPD xmm1, xmm2/m128 66 0F 5C /r Subtract Packed Double-Precision Floating-Point Values
SUBSD xmm1, xmm2/m64 F2 0F 5C /r Subtract Scalar Double-Precision Floating-Point Value

SSE2 logical instructions [ edit ]

Instruction Opcode Meaning
ANDPD xmm1, xmm2/m128 66 0F 54 /r Bitwise Logical AND of Packed Double Precision Floating-Point Values
ANDNPD xmm1, xmm2/m128 66 0F 55 /r Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values
ORPD xmm1, xmm2/m128 66 0F 56/r Bitwise Logical OR of Packed Double Precision Floating-Point Values
XORPD xmm1, xmm2/m128 66 0F 57/r Bitwise Logical XOR of Packed Double Precision Floating-Point Values

SSE2 compare instructions [ edit ]

Instruction Opcode Meaning
CMPPD xmm1, xmm2/m128, imm8 66 0F C2 /r ib Compare Packed Double-Precision Floating-Point Values
CMPSD* xmm1, xmm2/m64, imm8 F2 0F C2 /r ib Compare Low Double-Precision Floating-Point Values
COMISD xmm1, xmm2/m64 66 0F 2F /r Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
UCOMISD xmm1, xmm2/m64 66 0F 2E /r Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS

SSE2 shuffle and unpack instructions [ edit ]

Instruction Opcode Meaning
SHUFPD xmm1, xmm2/m128, imm8 66 0F C6 /r ib Packed Interleave Shuffle of Pairs of Double-Precision Floating-Point Values
UNPCKHPD xmm1, xmm2/m128 66 0F 15 /r Unpack and Interleave High Packed Double-Precision Floating-Point Values
UNPCKLPD xmm1, xmm2/m128 66 0F 14 /r Unpack and Interleave Low Packed Double-Precision Floating-Point Values

SSE2 conversion instructions [ edit ]

Instruction Opcode Meaning
CVTDQ2PD xmm1, xmm2/m64 F3 0F E6 /r Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
CVTDQ2PS xmm1, xmm2/m128 0F 5B /r Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
CVTPD2DQ xmm1, xmm2/m128 F2 0F E6 /r Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
CVTPD2PI mm, xmm/m128 66 0F 2D /r Convert Packed Double-Precision FP Values to Packed Dword Integers
CVTPD2PS xmm1, xmm2/m128 66 0F 5A /r Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
CVTPI2PD xmm, mm/m64 66 0F 2A /r Convert Packed Dword Integers to Packed Double-Precision FP Values
CVTPS2DQ xmm1, xmm2/m128 66 0F 5B /r Convert Packed Single-Precision Floating-Point Values to Packed Signed Doubleword Integer Values
CVTPS2PD xmm1, xmm2/m64 0F 5A /r Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
CVTSD2SI r32, xmm1/m64 F2 0F 2D /r Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
CVTSD2SI r64, xmm1/m64 F2 REX.W 0F 2D /r Convert Scalar Double-Precision Floating-Point Value to Quadword Integer With Sign Extension
CVTSD2SS xmm1, xmm2/m64 F2 0F 5A /r Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
CVTSI2SD xmm1, r32/m32 F2 0F 2A /r Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
CVTSI2SD xmm1, r/m64 F2 REX.W 0F 2A /r Convert Quadword Integer to Scalar Double-Precision Floating-Point value
CVTSS2SD xmm1, xmm2/m32 F3 0F 5A /r Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
CVTTPD2DQ xmm1, xmm2/m128 66 0F E6 /r Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
CVTTPD2PI mm, xmm/m128 66 0F 2C /r Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers
CVTTPS2DQ xmm1, xmm2/m128 F3 0F 5B /r Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Signed Doubleword Integer Values
CVTTSD2SI r32, xmm1/m64 F2 0F 2C /r Convert with Truncation Scalar Double-Precision Floating-Point Value to Signed Dword Integer
CVTTSD2SI r64, xmm1/m64 F2 REX.W 0F 2C /r Convert with Truncation Scalar Double-Precision Floating-Point Value To Signed Qword Integer
  • CMPSD and MOVSD have the same name as thestring instruction mnemonics CMPSD (CMPS) and MOVSD (MOVS) ; however, the former refer to scalardouble-precision floating-points whereas the latters refer todoubleword strings.

SSE2 SIMD integer instructions [ edit ]

SSE2 MMX-like instructions extended to SSE registers [ edit ]

SSE2 allows execution of MMX instructions on SSE registers, processing twice the amount of data at once.

Instruction Opcode Meaning
MOVD xmm, r/m32 66 0F 6E /r Move doubleword
MOVD r/m32, xmm 66 0F 7E /r Move doubleword
MOVQ xmm1, xmm2/m64 F3 0F 7E /r Move quadword
MOVQ xmm2/m64, xmm1 66 0F D6 /r Move quadword
MOVQ r/m64, xmm 66 REX.W 0F 7E /r Move quadword
MOVQ xmm, r/m64 66 REX.W 0F 6E /r Move quadword
PMOVMSKB reg, xmm 66 0F D7 /r Move a byte mask, zeroing the upper bits of the register
PEXTRW reg, xmm, imm8 66 0F C5 /r ib Extract specified word and move it to reg, setting bits 15-0 and zeroing the rest
PINSRW xmm, r32/m16, imm8 66 0F C4 /r ib Move low word at the specified word position
PACKSSDW xmm1, xmm2/m128 66 0F 6B /r Converts 4 packed signed doubleword integers into 8 packed signed word integers with saturation
PACKSSWB xmm1, xmm2/m128 66 0F 63 /r Converts 8 packed signed word integers into 16 packed signed byte integers with saturation
PACKUSWB xmm1, xmm2/m128 66 0F 67 /r Converts 8 signed word integers into 16 unsigned byte integers with saturation
PADDB xmm1, xmm2/m128 66 0F FC /r Add packed byte integers
PADDW xmm1, xmm2/m128 66 0F FD /r Add packed word integers
PADDD xmm1, xmm2/m128 66 0F FE /r Add packed doubleword integers
PADDQ xmm1, xmm2/m128 66 0F D4 /r Add packed quadword integers.
PADDSB xmm1, xmm2/m128 66 0F EC /r Add packed signed byte integers with saturation
PADDSW xmm1, xmm2/m128 66 0F ED /r Add packed signed word integers with saturation
PADDUSB xmm1, xmm2/m128 66 0F DC /r Add packed unsigned byte integers with saturation
PADDUSW xmm1, xmm2/m128 66 0F DD /r Add packed unsigned word integers with saturation
PAND xmm1, xmm2/m128 66 0F DB /r Bitwise AND
PANDN xmm1, xmm2/m128 66 0F DF /r Bitwise AND NOT
POR xmm1, xmm2/m128 66 0F EB /r Bitwise OR
PXOR xmm1, xmm2/m128 66 0F EF /r Bitwise XOR
PCMPEQB xmm1, xmm2/m128 66 0F 74 /r Compare packed bytes for equality.
PCMPEQW xmm1, xmm2/m128 66 0F 75 /r Compare packed words for equality.
PCMPEQD xmm1, xmm2/m128 66 0F 76 /r Compare packed doublewords for equality.
PCMPGTB xmm1, xmm2/m128 66 0F 64 /r Compare packed signed byte integers for greater than
PCMPGTW xmm1, xmm2/m128 66 0F 65 /r Compare packed signed word integers for greater than
PCMPGTD xmm1, xmm2/m128 66 0F 66 /r Compare packed signed doubleword integers for greater than
PMULLW xmm1, xmm2/m128 66 0F D5 /r Multiply packed signed word integers with saturation
PMULHW xmm1, xmm2/m128 66 0F E5 /r Multiply the packed signed word integers, store the high 16 bits of the results
PMULHUW xmm1, xmm2/m128 66 0F E4 /r Multiply packed unsigned word integers, store the high 16 bits of the results
PMULUDQ xmm1, xmm2/m128 66 0F F4 /r Multiply packed unsigned doubleword integers
PSLLW xmm1, xmm2/m128 66 0F F1 /r Shift words left while shifting in 0s
PSLLW xmm1, imm8 66 0F 71 /6 ib Shift words left while shifting in 0s
PSLLD xmm1, xmm2/m128 66 0F F2 /r Shift doublewords left while shifting in 0s
PSLLD xmm1, imm8 66 0F 72 /6 ib Shift doublewords left while shifting in 0s
PSLLQ xmm1, xmm2/m128 66 0F F3 /r Shift quadwords left while shifting in 0s
PSLLQ xmm1, imm8 66 0F 73 /6 ib Shift quadwords left while shifting in 0s
PSRAD xmm1, xmm2/m128 66 0F E2 /r Shift doubleword right while shifting in sign bits
PSRAD xmm1, imm8 66 0F 72 /4 ib Shift doublewords right while shifting in sign bits
PSRAW xmm1, xmm2/m128 66 0F E1 /r Shift words right while shifting in sign bits
PSRAW xmm1, imm8 66 0F 71 /4 ib Shift words right while shifting in sign bits
PSRLW xmm1, xmm2/m128 66 0F D1 /r Shift words right while shifting in 0s
PSRLW xmm1, imm8 66 0F 71 /2 ib Shift words right while shifting in 0s
PSRLD xmm1, xmm2/m128 66 0F D2 /r Shift doublewords right while shifting in 0s
PSRLD xmm1, imm8 66 0F 72 /2 ib Shift doublewords right while shifting in 0s
PSRLQ xmm1, xmm2/m128 66 0F D3 /r Shift quadwords right while shifting in 0s
PSRLQ xmm1, imm8 66 0F 73 /2 ib Shift quadwords right while shifting in 0s
PSUBB xmm1, xmm2/m128 66 0F F8 /r Subtract packed byte integers
PSUBW xmm1, xmm2/m128 66 0F F9 /r Subtract packed word integers
PSUBD xmm1, xmm2/m128 66 0F FA /r Subtract packed doubleword integers
PSUBQ xmm1, xmm2/m128 66 0F FB /r Subtract packed quadword integers.
PSUBSB xmm1, xmm2/m128 66 0F E8 /r Subtract packed signed byte integers with saturation
PSUBSW xmm1, xmm2/m128 66 0F E9 /r Subtract packed signed word integers with saturation
PMADDWD xmm1, xmm2/m128 66 0F F5 /r Multiply the packed word integers, add adjacent doubleword results
PSUBUSB xmm1, xmm2/m128 66 0F D8 /r Subtract packed unsigned byte integers with saturation
PSUBUSW xmm1, xmm2/m128 66 0F D9 /r Subtract packed unsigned word integers with saturation
PUNPCKHBW xmm1, xmm2/m128 66 0F 68 /r Unpack and interleave high-order bytes
PUNPCKHWD xmm1, xmm2/m128 66 0F 69 /r Unpack and interleave high-order words
PUNPCKHDQ xmm1, xmm2/m128 66 0F 6A /r Unpack and interleave high-order doublewords
PUNPCKLBW xmm1, xmm2/m128 66 0F 60 /r Interleave low-order bytes
PUNPCKLWD xmm1, xmm2/m128 66 0F 61 /r Interleave low-order words
PUNPCKLDQ xmm1, xmm2/m128 66 0F 62 /r Interleave low-order doublewords
PAVGB xmm1, xmm2/m128 66 0F E0, /r Average packed unsigned byte integers with rounding
PAVGW xmm1, xmm2/m128 66 0F E3 /r Average packed unsigned word integers with rounding
PMINUB xmm1, xmm2/m128 66 0F DA /r Compare packed unsigned byte integers and store packed minimum values
PMINSW xmm1, xmm2/m128 66 0F EA /r Compare packed signed word integers and store packed minimum values
PMAXSW xmm1, xmm2/m128 66 0F EE /r Compare packed signed word integers and store maximum packed values
PMAXUB xmm1, xmm2/m128 66 0F DE /r Compare packed unsigned byte integers and store packed maximum values
PSADBW xmm1, xmm2/m128 66 0F F6 /r Computes the absolute differences of the packed unsigned byte integers; the 8 low differences and 8 high differences are then summed separately to produce two unsigned word integer results

SSE2 integer instructions for SSE registers only [ edit ]

The following instructions can be used only on SSE registers, since by their nature they do not work on MMX registers

Instruction Opcode Meaning
MASKMOVDQU xmm1, xmm2 66 0F F7 /r Non-Temporal Store of Selected Bytes from an XMM Register into Memory
MOVDQ2Q mm, xmm F2 0F D6 /r Move low quadword from XMM to MMX register.
MOVDQA xmm1, xmm2/m128 66 0F 6F /r Move aligned double quadword
MOVDQA xmm2/m128, xmm1 66 0F 7F /r Move aligned double quadword
MOVDQU xmm1, xmm2/m128 F3 0F 6F /r Move unaligned double quadword
MOVDQU xmm2/m128, xmm1 F3 0F 7F /r Move unaligned double quadword
MOVQ2DQ xmm, mm F3 0F D6 /r Move quadword from MMX register to low quadword of XMM register
MOVNTDQ m128, xmm1 66 0F E7 /r Store Packed Integers Using Non-Temporal Hint
PSHUFHW xmm1, xmm2/m128, imm8 F3 0F 70 /r ib Shuffle packed high words.
PSHUFLW xmm1, xmm2/m128, imm8 F2 0F 70 /r ib Shuffle packed low words.
PSHUFD xmm1, xmm2/m128, imm8 66 0F 70 /r ib Shuffle packed doublewords.
PSLLDQ xmm1, imm8 66 0F 73 /7 ib Packed shift left logical double quadwords.
PSRLDQ xmm1, imm8 66 0F 73 /3 ib Packed shift right logical double quadwords.
PUNPCKHQDQ xmm1, xmm2/m128 66 0F 6D /r Unpack and interleave high-order quadwords,
PUNPCKLQDQ xmm1, xmm2/m128 66 0F 6C /r Interleave low quadwords,

SSE3 instructions [ edit ]

Added with Pentium 4 supporting SSE3

SSE3 SIMD floating-point instructions [ edit ]

Instruction Opcode Meaning Notes
ADDSUBPS xmm1, xmm2/m128 F2 0F D0 /r Add/subtract single-precision floating-point values for Complex Arithmetic
ADDSUBPD xmm1, xmm2/m128 66 0F D0 /r Add/subtract double-precision floating-point values
MOVDDUP xmm1, xmm2/m64 F2 0F 12 /r Move double-precision floating-point value and duplicate
MOVSLDUP xmm1, xmm2/m128 F3 0F 12 /r Move and duplicate even index single-precision floating-point values
MOVSHDUP xmm1, xmm2/m128 F3 0F 16 /r Move and duplicate odd index single-precision floating-point values
HADDPS xmm1, xmm2/m128 F2 0F 7C /r Horizontal add packed single-precision floating-point values for Graphics
HADDPD xmm1, xmm2/m128 66 0F 7C /r Horizontal add packed double-precision floating-point values
HSUBPS xmm1, xmm2/m128 F2 0F 7D /r Horizontal subtract packed single-precision floating-point values
HSUBPD xmm1, xmm2/m128 66 0F 7D /r Horizontal subtract packed double-precision floating-point values

SSE3 SIMD integer instructions [ edit ]

Instruction Opcode Meaning Notes
LDDQU xmm1, mem F2 0F F0 /r Load unaligned data and return double quadword Instructionally equivalent to MOVDQU. For video encoding

SSSE3 instructions [ edit ]

Added withXeon 5100 series and initialCore 2

The following MMX-like instructions extended to SSE registers were added with SSSE3

Instruction Opcode Meaning
PSIGNB xmm1, xmm2/m128 66 0F 38 08 /r Negate/zero/preserve packed byte integers depending on corresponding sign
PSIGNW xmm1, xmm2/m128 66 0F 38 09 /r Negate/zero/preserve packed word integers depending on corresponding sign
PSIGND xmm1, xmm2/m128 66 0F 38 0A /r Negate/zero/preserve packed doubleword integers depending on corresponding
PSHUFB xmm1, xmm2/m128 66 0F 38 00 /r Shuffle bytes
PMULHRSW xmm1, xmm2/m128 66 0F 38 0B /r Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits
PMADDUBSW xmm1, xmm2/m128 66 0F 38 04 /r Multiply signed and unsigned bytes, add horizontal pair of signed words, pack saturated signed-words
PHSUBW xmm1, xmm2/m128 66 0F 38 05 /r Subtract and pack 16-bit signed integers horizontally
PHSUBSW xmm1, xmm2/m128 66 0F 38 07 /r Subtract and pack 16-bit signed integer horizontally with saturation
PHSUBD xmm1, xmm2/m128 66 0F 38 06 /r Subtract and pack 32-bit signed integers horizontally
PHADDSW xmm1, xmm2/m128 66 0F 38 03 /r Add and pack 16-bit signed integers horizontally with saturation
PHADDW xmm1, xmm2/m128 66 0F 38 01 /r Add and pack 16-bit integers horizontally
PHADDD xmm1, xmm2/m128 66 0F 38 02 /r Add and pack 32-bit integers horizontally
PALIGNR xmm1, xmm2/m128, imm8 66 0F 3A 0F /r ib Concatenate destination and source operands, extract byte-aligned result shifted to the right
PABSB xmm1, xmm2/m128 66 0F 38 1C /r Compute the absolute value of bytes and store unsigned result
PABSW xmm1, xmm2/m128 66 0F 38 1D /r Compute the absolute value of 16-bit integers and store unsigned result
PABSD xmm1, xmm2/m128 66 0F 38 1E /r Compute the absolute value of 32-bit integers and store unsigned result

SSE4 instructions [ edit ]

SSE4.1 [ edit ]

Added withCore 2 manufactured in45nm

SSE4.1 SIMD floating-point instructions [ edit ]

Instruction Opcode Meaning
DPPS xmm1, xmm2/m128, imm8 66 0F 3A 40 /r ib Selectively multiply packed SP floating-point values, add and selectively store
DPPD xmm1, xmm2/m128, imm8 66 0F 3A 41 /r ib Selectively multiply packed DP floating-point values, add and selectively store
BLENDPS xmm1, xmm2/m128, imm8 66 0F 3A 0C /r ib Select packed single precision floating-point values from specified mask
BLENDVPS xmm1, xmm2/m128, <XMM0> 66 0F 38 14 /r Select packed single precision floating-point values from specified mask
BLENDPD xmm1, xmm2/m128, imm8 66 0F 3A 0D /r ib Select packed DP-FP values from specified mask
BLENDVPD xmm1, xmm2/m128 , <XMM0> 66 0F 38 15 /r Select packed DP FP values from specified mask
ROUNDPS xmm1, xmm2/m128, imm8 66 0F 3A 08 /r ib Round packed single precision floating-point values
ROUNDSS xmm1, xmm2/m32, imm8 66 0F 3A 0A /r ib Round the low packed single precision floating-point value
ROUNDPD xmm1, xmm2/m128, imm8 66 0F 3A 09 /r ib Round packed double precision floating-point values
ROUNDSD xmm1, xmm2/m64, imm8 66 0F 3A 0B /r ib Round the low packed double precision floating-point value
INSERTPS xmm1, xmm2/m32, imm8 66 0F 3A 21 /r ib Insert a selected single-precision floating-point value at the specified destination element and zero out destination elements
EXTRACTPS reg/m32, xmm1, imm8 66 0F 3A 17 /r ib Extract one single-precision floating-point value at specified offset and store the result (zero-extended, if applicable)

SSE4.1 SIMD integer instructions [ edit ]

Instruction Opcode Meaning
MPSADBW xmm1, xmm2/m128, imm8 66 0F 3A 42 /r ib Sums absolute 8-bit integer difference of adjacent groups of 4 byte integers with starting offset
PHMINPOSUW xmm1, xmm2/m128 66 0F 38 41 /r Find the minimum unsigned word
PMULLD xmm1, xmm2/m128 66 0F 38 40 /r Multiply the packed dword signed integers and store the low 32 bits
PMULDQ xmm1, xmm2/m128 66 0F 38 28 /r Multiply packed signed doubleword integers and store quadword result
PBLENDVB xmm1, xmm2/m128, <XMM0> 66 0F 38 10 /r Select byte values from specified mask
PBLENDW xmm1, xmm2/m128, imm8 66 0F 3A 0E /r ib Select words from specified mask
PMINSB xmm1, xmm2/m128 66 0F 38 38 /r Compare packed signed byte integers
PMINUW xmm1, xmm2/m128 66 0F 38 3A/r Compare packed unsigned word integers
PMINSD xmm1, xmm2/m128 66 0F 38 39 /r Compare packed signed dword integers
PMINUD xmm1, xmm2/m128 66 0F 38 3B /r Compare packed unsigned dword integers
PMAXSB xmm1, xmm2/m128 66 0F 38 3C /r Compare packed signed byte integers
PMAXUW xmm1, xmm2/m128 66 0F 38 3E/r Compare packed unsigned word integers
PMAXSD xmm1, xmm2/m128 66 0F 38 3D /r Compare packed signed dword integers
PMAXUD xmm1, xmm2/m128 66 0F 38 3F /r Compare packed unsigned dword integers
PINSRB xmm1, r32/m8, imm8 66 0F 3A 20 /r ib Insert a byte integer value at specified destination element
PINSRD xmm1, r/m32, imm8 66 0F 3A 22 /r ib Insert a dword integer value at specified destination element
PINSRQ xmm1, r/m64, imm8 66 REX.W 0F 3A 22 /r ib Insert a qword integer value at specified destination element
PEXTRB reg/m8, xmm2, imm8 66 0F 3A 14 /r ib Extract a byte integer value at source byte offset, upper bits are zeroed.
PEXTRW reg/m16, xmm, imm8 66 0F 3A 15 /r ib Extract word and copy to lowest 16 bits, zero-extended
PEXTRD r/m32, xmm2, imm8 66 0F 3A 16 /r ib Extract a dword integer value at source dword offset
PEXTRQ r/m64, xmm2, imm8 66 REX.W 0F 3A 16 /r ib Extract a qword integer value at source qword offset
PMOVSXBW xmm1, xmm2/m64 66 0f 38 20 /r Sign extend 8 packed 8-bit integers to 8 packed 16-bit integers
PMOVZXBW xmm1, xmm2/m64 66 0f 38 30 /r Zero extend 8 packed 8-bit integers to 8 packed 16-bit integers
PMOVSXBD xmm1, xmm2/m32 66 0f 38 21 /r Sign extend 4 packed 8-bit integers to 4 packed 32-bit integers
PMOVZXBD xmm1, xmm2/m32 66 0f 38 31 /r Zero extend 4 packed 8-bit integers to 4 packed 32-bit integers
PMOVSXBQ xmm1, xmm2/m16 66 0f 38 22 /r Sign extend 2 packed 8-bit integers to 2 packed 64-bit integers
PMOVZXBQ xmm1, xmm2/m16 66 0f 38 32 /r Zero extend 2 packed 8-bit integers to 2 packed 64-bit integers
PMOVSXWD xmm1, xmm2/m64 66 0f 38 23/r Sign extend 4 packed 16-bit integers to 4 packed 32-bit integers
PMOVZXWD xmm1, xmm2/m64 66 0f 38 33 /r Zero extend 4 packed 16-bit integers to 4 packed 32-bit integers
PMOVSXWQ xmm1, xmm2/m32 66 0f 38 24 /r Sign extend 2 packed 16-bit integers to 2 packed 64-bit integers
PMOVZXWQ xmm1, xmm2/m32 66 0f 38 34 /r Zero extend 2 packed 16-bit integers to 2 packed 64-bit integers
PMOVSXDQ xmm1, xmm2/m64 66 0f 38 25 /r Sign extend 2 packed 32-bit integers to 2 packed 64-bit integers
PMOVZXDQ xmm1, xmm2/m64 66 0f 38 35 /r Zero extend 2 packed 32-bit integers to 2 packed 64-bit integers
PTEST xmm1, xmm2/m128 66 0F 38 17 /r Set ZF if AND result is all 0s, set CF if AND NOT result is all 0s
PCMPEQQ xmm1, xmm2/m128 66 0F 38 29 /r Compare packed qwords for equality
PACKUSDW xmm1, xmm2/m128 66 0F 38 2B /r Convert 2 × 4 packed signed doubleword integers into 8 packed unsigned word integers with saturation
MOVNTDQA xmm1, m128 66 0F 38 2A /r Move double quadword using non-temporal hint if WC memory type

SSE4a [ edit ]

Added withPhenom processors

  • EXTRQ/INSERTQ
  • MOVNTSD/MOVNTSS

SSE4.2 [ edit ]

Added withNehalem processors

Instruction Opcode Meaning
PCMPESTRI xmm1, xmm2/m128, imm8 66 0F 3A 61 /r imm8 Packed comparison of string data with explicit lengths, generating an index
PCMPESTRM xmm1, xmm2/m128, imm8 66 0F 3A 60 /r imm8 Packed comparison of string data with explicit lengths, generating a mask
PCMPISTRI xmm1, xmm2/m128, imm8 66 0F 3A 63 /r imm8 Packed comparison of string data with implicit lengths, generating an index
PCMPISTRM xmm1, xmm2/m128, imm8 66 0F 3A 62 /r imm8 Packed comparison of string data with implicit lengths, generating a mask
PCMPGTQ xmm1,xmm2/m128 66 0F 38 37 /r Compare packed signed qwords for greater than.

SSE5 derived instructions [ edit ]

SSE5 was a proposed SSE extension by AMD. The bundle did not include the full set of Intel's SSE4 instructions, making it a competitor to SSE4 rather than a successor. AMD chose not to implement SSE5 as originally proposed, however, derived SSE extensions were introduced.

XOP [ edit ]

Introduced with the bulldozer processor core, removed again from Zen (microarchitecture) onward.

A revision of most of the SSE5 instruction set

F16C [ edit ]

Half-precision floating-point conversion.

Instruction Meaning
VCVTPH2PS xmmreg,xmmrm64 Convert four half-precision floating point values in memory or the bottom half of an XMM register to four single-precision floating-point values in an XMM register
VCVTPH2PS ymmreg,xmmrm128 Convert eight half-precision floating point values in memory or an XMM register (the bottom half of a YMM register) to eight single-precision floating-point values in a YMM register
VCVTPS2PH xmmrm64,xmmreg,imm8 Convert four single-precision floating point values in an XMM register to half-precision floating-point values in memory or the bottom half an XMM register
VCVTPS2PH xmmrm128,ymmreg,imm8 Convert eight single-precision floating point values in a YMM register to half-precision floating-point values in memory or an XMM register

FMA3 [ edit ]

Supported in AMD processors starting with the Piledriver architecture and Intel starting with Haswell processors and Broadwell processors since 2014.

Fused multiply-add (floating-point vector multiply–accumulate) with three operands.

Instruction Meaning
VFMADD132PD Fused Multiply-Add of Packed Double-Precision Floating-Point Values
VFMADD213PD Fused Multiply-Add of Packed Double-Precision Floating-Point Values
VFMADD231PD Fused Multiply-Add of Packed Double-Precision Floating-Point Values
VFMADD132PS Fused Multiply-Add of Packed Single-Precision Floating-Point Values
VFMADD213PS Fused Multiply-Add of Packed Single-Precision Floating-Point Values
VFMADD231PS Fused Multiply-Add of Packed Single-Precision Floating-Point Values
VFMADD132SD Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
VFMADD213SD Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
VFMADD231SD Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
VFMADD132SS Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
VFMADD213SS Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
VFMADD231SS Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
VFMADDSUB132PD Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
VFMADDSUB213PD Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
VFMADDSUB231PD Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
VFMADDSUB132PS Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
VFMADDSUB213PS Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
VFMADDSUB231PS Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
VFMSUB132PD Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFMSUB213PD Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFMSUB231PD Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFMSUB132PS Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFMSUB213PS Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFMSUB231PS Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFMSUB132SD Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFMSUB213SD Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFMSUB231SD Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFMSUB132SS Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
VFMSUB213SS Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
VFMSUB231SS Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
VFMSUBADD132PD Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
VFMSUBADD213PD Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
VFMSUBADD231PD Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
VFMSUBADD132PS Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
VFMSUBADD213PS Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
VFMSUBADD231PS Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
VFNMADD132PD Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
VFNMADD213PD Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
VFNMADD231PD Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
VFNMADD132PS Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
VFNMADD213PS Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
VFNMADD231PS Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
VFNMADD132SD Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
VFNMADD213SD Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
VFNMADD231SD Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
VFNMADD132SS Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
VFNMADD213SS Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
VFNMADD231SS Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
VFNMSUB132PD Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFNMSUB213PD Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFNMSUB231PD Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFNMSUB132PS Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFNMSUB213PS Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFNMSUB231PS Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFNMSUB132SD Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFNMSUB213SD Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFNMSUB231SD Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFNMSUB132SS Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
VFNMSUB213SS Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
VFNMSUB231SS Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values

FMA4 [ edit ]

Supported in AMD processors starting with the Bulldozer architecture. Not supported by any intel chip as of 2017.

Fused multiply-add with four operands. FMA4 was realized in hardware before FMA3.

Instruction Opcode Meaning Notes
VFMADDPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 69 /r /is4 Fused Multiply-Add of Packed Double-Precision Floating-Point Values
VFMADDPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 68 /r /is4 Fused Multiply-Add of Packed Single-Precision Floating-Point Values
VFMADDSD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6B /r /is4 Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
VFMADDSS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6A /r /is4 Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
VFMADDSUBPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 5D /r /is4 Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
VFMADDSUBPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 5C /r /is4 Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
VFMSUBADDPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 5F /r /is4 Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
VFMSUBADDPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 5E /r /is4 Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
VFMSUBPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6D /r /is4 Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFMSUBPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6C /r /is4 Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFMSUBSD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6F /r /is4 Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFMSUBSS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6E /r /is4 Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
VFNMADDPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 79 /r /is4 Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
VFNMADDPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 78 /r /is4 Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
VFNMADDSD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7B /r /is4 Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
VFNMADDSS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7A /r /is4 Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
VFNMSUBPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7D /r /is4 Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFNMSUBPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7C /r /is4 Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFNMSUBSD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7F /r /is4 Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFNMSUBSS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7E /r /is4 Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values

AVX [ edit ]

AVX were first supported by Intel with Sandy Bridge and by AMD withBulldozer.

Vector operations on 256 bit registers.

Instruction Description
VBROADCASTSS Copy a 32-bit, 64-bit or 128-bit memory operand to all elements of a XMM or YMM vector register.
VBROADCASTSD
VBROADCASTF128
VINSERTF128 Replaces either the lower half or the upper half of a 256-bit YMM register with the value of a 128-bit source operand. The other half of the destination is unchanged.
VEXTRACTF128 Extracts either the lower half or the upper half of a 256-bit YMM register and copies the value to a 128-bit destination operand.
VMASKMOVPS Conditionally reads any number of elements from a SIMD vector memory operand into a destination register, leaving the remaining vector elements unread and setting the corresponding elements in the destination register to zero. Alternatively, conditionally writes any number of elements from a SIMD vector register operand to a vector memory operand, leaving the remaining elements of the memory operand unchanged. On the AMD Jaguar processor architecture, this instruction with a memory source operand takes more than 300 clock cycles when the mask is zero, in which case the instruction should do nothing. This appears to be a design flaw.
VMASKMOVPD
VPERMILPS Permute In-Lane. Shuffle the 32-bit or 64-bit vector elements of one input operand. These are in-lane 256-bit instructions, meaning that they operate on all 256 bits with two separate 128-bit shuffles, so they can not shuffle across the 128-bit lanes.
VPERMILPD
VPERM2F128 Shuffle the four 128-bit vector elements of two 256-bit source operands into a 256-bit destination operand, with an immediate constant as selector.
VZEROALL Set all YMM registers to zero and tag them as unused. Used when switching between 128-bit use and 256-bit use.
VZEROUPPER Set the upper half of all YMM registers to zero. Used when switching between 128-bit use and 256-bit use.

AVX2 [ edit ]

Introduced in Intel's Haswell microarchitecture and AMD's Excavator.

Expansion of most vector integer SSE and AVX instructions to 256 bits

Instruction Description
VBROADCASTSS Copy a 32-bit or 64-bit register operand to all elements of a XMM or YMM vector register. These are register versions of the same instructions in AVX1. There is no 128-bit version however, but the same effect can be simply achieved using VINSERTF128.
VBROADCASTSD
VPBROADCASTB Copy an 8, 16, 32 or 64-bit integer register or memory operand to all elements of a XMM or YMM vector register.
VPBROADCASTW
VPBROADCASTD
VPBROADCASTQ
VBROADCASTI128 Copy a 128-bit memory operand to all elements of a YMM vector register.
VINSERTI128 Replaces either the lower half or the upper half of a 256-bit YMM register with the value of a 128-bit source operand. The other half of the destination is unchanged.
VEXTRACTI128 Extracts either the lower half or the upper half of a 256-bit YMM register and copies the value to a 128-bit destination operand.
VGATHERDPD Gathers single or double precision floating point values using either 32 or 64-bit indices and scale.
VGATHERQPD
VGATHERDPS
VGATHERQPS
VPGATHERDD Gathers 32 or 64-bit integer values using either 32 or 64-bit indices and scale.
VPGATHERDQ
VPGATHERQD
VPGATHERQQ
VPMASKMOVD Conditionally reads any number of elements from a SIMD vector memory operand into a destination register, leaving the remaining vector elements unread and setting the corresponding elements in the destination register to zero. Alternatively, conditionally writes any number of elements from a SIMD vector register operand to a vector memory operand, leaving the remaining elements of the memory operand unchanged.
VPMASKMOVQ
VPERMPS Shuffle the eight 32-bit vector elements of one 256-bit source operand into a 256-bit destination operand, with a register or memory operand as selector.
VPERMD
VPERMPD Shuffle the four 64-bit vector elements of one 256-bit source operand into a 256-bit destination operand, with a register or memory operand as selector.
VPERMQ
VPERM2I128 Shuffle (two of) the four 128-bit vector elements of two 256-bit source operands into a 256-bit destination operand, with an immediate constant as selector.
VPBLENDD Doubleword immediate version of the PBLEND instructions fromSSE4.
VPSLLVD Shift left logical. Allows variable shifts where each element is shifted according to the packed input.
VPSLLVQ
VPSRLVD Shift right logical. Allows variable shifts where each element is shifted according to the packed input.
VPSRLVQ
VPSRAVD Shift right arithmetically. Allows variable shifts where each element is shifted according to the packed input.

AVX-512 [ edit ]

Introduced in Intel'sXeon Phi x200

Vector operations on 512 bit registers.

AVX-512 foundation [ edit ]

Instruction Description
VBLENDMPD Blend float64 vectors using opmask control
VBLENDMPS Blend float32 vectors using opmask control
VPBLENDMD Blend int32 vectors using opmask control
VPBLENDMQ Blend int64 vectors using opmask control
VPCMPD Compare signed/unsigned doublewords into mask
VPCMPUD
VPCMPQ Compare signed/unsigned quadwords into mask
VPCMPUQ
VPTESTMD Logical AND and set mask for 32 or 64 bit integers.
VPTESTMQ
VPTESTNMD Logical NAND and set mask for 32 or 64 bit integers.
VPTESTNMQ
VCOMPRESSPD Store sparse packed double/single-precision floating-point values into dense memory
VCOMPRESSPS
VPCOMPRESSD Store sparse packed doubleword/quadword integer values into dense memory/register
VPCOMPRESSQ
VEXPANDPD Load sparse packed double/single-precision floating-point values from dense memory
VEXPANDPS
VPEXPANDD Load sparse packed doubleword/quadword integer values from dense memory/register
VPEXPANDQ
VPERMI2PD Full single/double floating point permute overwriting the index.
VPERMI2PS
VPERMI2D Full doubleword/quadword permute overwriting the index.
VPERMI2Q
VPERMT2PS Full single/double floating point permute overwriting first source.
VPERMT2PD
VPERMT2D Full doubleword/quadword permute overwriting first source.
VPERMT2Q
VSHUFF32x4 Shuffle four packed 128-bit lines.
VSHUFF64x2
VSHUFFI32x4
VSHUFFI64x2
VPTERNLOGD Bitwise Ternary Logic
VPTERNLOGQ
VPMOVQD Down convert quadword or doubleword to doubleword, word or byte; unsaturated, saturated or saturated unsigned. The reverse of the sign/zero extend instructions fromSSE4.1.
VPMOVSQD
VPMOVUSQD
VPMOVQW
VPMOVSQW
VPMOVUSQW
VPMOVQB
VPMOVSQB
VPMOVUSQB
VPMOVDW
VPMOVSDW
VPMOVUSDW
VPMOVDB
VPMOVSDB
VPMOVUSDB
VCVTPS2UDQ Convert with or without truncation, packed single or double-precision floating point to packed unsigned doubleword integers.
VCVTPD2UDQ
VCVTTPS2UDQ
VCVTTPD2UDQ
VCVTSS2USI Convert with or without trunction, scalar single or double-precision floating point to unsigned doubleword integer.
VCVTSD2USI
VCVTTSS2USI
VCVTTSD2USI
VCVTUDQ2PS Convert packed unsigned doubleword integers to packed single or double-precision floating point.
VCVTUDQ2PD
VCVTUSI2PS Convert scalar unsigned doubleword integers to single or double-precision floating point.
VCVTUSI2PD
VCVTUSI2SD Convert scalar unsigned integers to single or double-precision floating point.
VCVTUSI2SS
VCVTQQ2PD Convert packed quadword integers to packed single or double-precision floating point.
VCVTQQ2PS
VGETEXPPD Convert exponents of packed fp values into fp values
VGETEXPPS
VGETEXPSD Convertexponent of scalar fp value into fp value
VGETEXPSS
VGETMANTPD Extract vector of normalized mantissas from float32/float64 vector
VGETMANTPS
VGETMANTSD Extract float32/float64 of normalizedmantissa from float32/float64 scalar
VGETMANTSS
VFIXUPIMMPD Fix up special packed float32/float64 values
VFIXUPIMMPS
VFIXUPIMMSD Fix up special scalar float32/float64 value
VFIXUPIMMSS
VRCP14PD Compute approximate reciprocals of packed float32/float64 values
VRCP14PS
VRCP14SD Compute approximate reciprocals of scalar float32/float64 value
VRCP14SS
VRNDSCALEPS Round packed float32/float64 values to include a given number of fraction bits
VRNDSCALEPD
VRNDSCALESS Round scalar float32/float64 value to include a given number of fraction bits
VRNDSCALESD
VRSQRT14PD Compute approximate reciprocals of square roots of packed float32/float64 values
VRSQRT14PS
VRSQRT14SD Compute approximate reciprocal of square root of scalar float32/float64 value
VRSQRT14SS
VSCALEFPS Scale packed float32/float64 values with float32/float64 values
VSCALEFPD
VSCALEFSS Scale scalar float32/float64 value with float32/float64 value
VSCALEFSD
VALIGND Align doubleword or quadword vectors
VALIGNQ
VPABSQ Packed absolute value quadword
VPMAXSQ Maximum of packed signed/unsigned quadword
VPMAXUQ
VPMINSQ Minimum of packed signed/unsigned quadword
VPMINUQ
VPROLD Bit rotate left or right
VPROLVD
VPROLQ
VPROLVQ
VPRORD
VPRORVD
VPRORQ
VPRORVQ
VPSCATTERDD Scatter packed doubleword/quadword with signed doubleword and quadword indices
VPSCATTERDQ
VPSCATTERQD
VPSCATTERQQ
VSCATTERDPS Scatter packed float32/float64 with signed doubleword and quadword indices
VSCATTERDPD
VSCATTERQPS
VSCATTERQPD

Cryptographic instructions [ edit ]

Intel AES instructions [ edit ]

Main article:AES instruction set

6 new instructions.

Instruction Description
AESENC Perform one round of anAES encryption flow
AESENCLAST Perform the last round of an AES encryption flow
AESDEC Perform one round of an AES decryption flow
AESDECLAST Perform the last round of an AES decryption flow
AESKEYGENASSIST Assist in AES round key generation
AESIMC Assist in AES Inverse Mix Columns

RDRAND and RDSEED [ edit ]

Main article:RDRAND

Instruction Description
RDRAND Read Random Number
RDSEED Read Random Seed

Intel SHA instructions [ edit ]

Main article:Intel SHA extensions

7 new instructions.

Instruction Description
SHA1RNDS4 Perform Four Rounds of SHA1 Operation
SHA1NEXTE Calculate SHA1 State Variable E after Four Rounds
SHA1MSG1 Perform an Intermediate Calculation for the Next Four SHA1 Message Dwords
SHA1MSG2 Perform a Final Calculation for the Next Four SHA1 Message Dwords
SHA256RNDS2 Perform Two Rounds of SHA256 Operation
SHA256MSG1 Perform an Intermediate Calculation for the Next Four SHA256 Message Dwords
SHA256MSG2 Perform a Final Calculation for the Next Four SHA256 Message Dwords

Undocumented instructions [ edit ]

Undocumented x86 instructions [ edit ]

The x86 CPUs contain undocumented instructions which are implemented on the chips but not listed in some official documents. They can be found in various sources across the Internet, such as Ralf Brown's Interrupt List and at sandpile.org

Mnemonic Opcode Description Status
AAM imm8 D4 imm8 Divide AL by imm8, put the quotient in AH, and the remainder in AL Available beginning with 8086, documented since Pentium (earlier documentation lists no arguments)
AAD imm8 D5 imm8 Multiplication counterpart of AAM Available beginning with 8086, documented since Pentium (earlier documentation lists no arguments)
SALC D6 Set AL depending on the value of the Carry Flag (a 1-byte alternative of SBB AL, AL) Available beginning with 8086, but only documented since Pentium Pro.
ICEBP F1 Single byte single-step exception / InvokeICE Available beginning with 80386, documented (as INT1) since Pentium Pro
Unknown mnemonic 0F 04 Exact purpose unknown, causes CPU hang (HCF). The only way out is CPU reset.

In some implementations, emulated throughBIOS as ahalting sequence.

In a forum post at the Vintage Computing Federation , this instruction is explained as SAVEALL. It interacts with ICE mode.

Only available on 80286
LOADALL 0F 05 Loads All Registers from Memory Address 0x000800H Only available on 80286
LOADALLD 0F 07 Loads All Registers from Memory Address ES:EDI Only available on 80386
UD1 0F B9 Intentionally undefined instruction, but unlike UD2 this was not published
ALTINST 0F 3F Jump and execute instructions in the undocumented Alternate Instruction Set . Only available on some x86 processors made byVIA Technologies.

Undocumented x87 instructions [ edit ]

FFREEP performs FFREE ST(i) and pop stack

See also [ edit ]


以上所述就是小编给大家介绍的《x86 Instruction Listings》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

机器学习

机器学习

周志华 / 清华大学出版社 / 2016-1-1 / 88.00元

机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识. 然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便读者, 本书附录给出了一......一起来看看 《机器学习》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

在线进制转换器
在线进制转换器

各进制数互转换器

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码