Acme – A framework for distributed reinforcement learning

栏目: IT技术 · 发布时间: 4年前

内容简介:||

Acme – A framework for distributed reinforcement learning

Acme: A research framework for reinforcement learning

|| Documentation | Agents | Examples | Paper

Acme is a library of reinforcement learning (RL) agents and agent building blocks. Acme strives to expose simple, efficient, and readable agents, that serve both as reference implementations of popular algorithms and as strong baselines, while still providing enough flexibility to do novel research. The design of Acme also attempts to provide multiple points of entry to the RL problem at differing levels of complexity.

Overview

At the highest level Acme exposes a number of agents which can be used simply as follows:

import acme

# Create an environment and an actor.
environment = ...
actor = ...

# Run the environment loop.
loop = acme.EnvironmentLoop(environment, actor)
loop.run()

Acme also tries to maintain this level of simplicity while either diving deeper into the agent algorithms or by using them in more complicated settings. An overview of Acme along with more detailed descriptions of its underlying components can be found by referring to the documentation .

For a quick start, take a look at the more detailed working code examples found in the examples subdirectory, which also includes a tutorial notebook to get you started. And finally, for more information on the various agent implementations available take a look at the agents subdirectory along with the README.md associated with each agent.

Installation

We support Python 3.6 and 3.7.

To install acme core:

# Install Acme core dependencies.
pip install dm-acme

# Install Reverb, our replay backend.
pip install dm-acme[reverb]

To install dependencies for our JAX/TensorFlow-based agents:

pip install dm-acme[tf]
# and/or
pip install dm-acme[jax]

Finally, to install environments (gym, dm_control, bsuite):

pip install dm-acme[envs]

Citing Acme

If you use Acme in your work, please cite the accompanying technical report :

@article{hoffman2020acme,
    title={Acme: A Research Framework for Distributed Reinforcement Learning},
    author={Matt Hoffman and
            Bobak Shahriari and
            John Aslanides and
            Gabriel Barth-Maron and
            Feryal Behbahani and
            Tamara Norman and
            Abbas Abdolmaleki and
            Albin Cassirer and
            Fan Yang and
            Kate Baumli and
            Sarah Henderson and
            Alex Novikov and
            Sergio Gómez Colmenarejo and
            Serkan Cabi and
            Caglar Gulcehre and
            Tom Le Paine and
            Andrew Cowie and
            Ziyu Wang and
            Bilal Piot and
            Nando de Freitas},
    year={2020},
    journal={arXiv preprint arXiv:2006.00979},
    url={https://arxiv.org/abs/2006.00979},
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

安全之美

安全之美

Andy Oram、John Viega / 徐 波、沈晓斌 / 机械工业出版社华章公司 / 2011-4-28 / 65.00元

“这本深思熟虑的论文集(《安全之美》)帮助读者摆脱安全领域闪烁着欺骗光芒的心理恐惧,转而欣赏安全的微妙美感。本书描述了安全的阴和阳,以及引人注目的破坏性和闪亮光辉的建设者之间剑拔弩张的气氛。” ——Gary McGraw,Cigital公司CTO,《Software Security》及其他9本书的作者 大多数人不会太关注安全问题,直到他们的个人或商业系统受到攻击。这种发人深省的现象证......一起来看看 《安全之美》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

URL 编码/解码
URL 编码/解码

URL 编码/解码