Acme – A framework for distributed reinforcement learning

栏目: IT技术 · 发布时间: 4年前

内容简介:||

Acme – A framework for distributed reinforcement learning

Acme: A research framework for reinforcement learning

|| Documentation | Agents | Examples | Paper

Acme is a library of reinforcement learning (RL) agents and agent building blocks. Acme strives to expose simple, efficient, and readable agents, that serve both as reference implementations of popular algorithms and as strong baselines, while still providing enough flexibility to do novel research. The design of Acme also attempts to provide multiple points of entry to the RL problem at differing levels of complexity.

Overview

At the highest level Acme exposes a number of agents which can be used simply as follows:

import acme

# Create an environment and an actor.
environment = ...
actor = ...

# Run the environment loop.
loop = acme.EnvironmentLoop(environment, actor)
loop.run()

Acme also tries to maintain this level of simplicity while either diving deeper into the agent algorithms or by using them in more complicated settings. An overview of Acme along with more detailed descriptions of its underlying components can be found by referring to the documentation .

For a quick start, take a look at the more detailed working code examples found in the examples subdirectory, which also includes a tutorial notebook to get you started. And finally, for more information on the various agent implementations available take a look at the agents subdirectory along with the README.md associated with each agent.

Installation

We support Python 3.6 and 3.7.

To install acme core:

# Install Acme core dependencies.
pip install dm-acme

# Install Reverb, our replay backend.
pip install dm-acme[reverb]

To install dependencies for our JAX/TensorFlow-based agents:

pip install dm-acme[tf]
# and/or
pip install dm-acme[jax]

Finally, to install environments (gym, dm_control, bsuite):

pip install dm-acme[envs]

Citing Acme

If you use Acme in your work, please cite the accompanying technical report :

@article{hoffman2020acme,
    title={Acme: A Research Framework for Distributed Reinforcement Learning},
    author={Matt Hoffman and
            Bobak Shahriari and
            John Aslanides and
            Gabriel Barth-Maron and
            Feryal Behbahani and
            Tamara Norman and
            Abbas Abdolmaleki and
            Albin Cassirer and
            Fan Yang and
            Kate Baumli and
            Sarah Henderson and
            Alex Novikov and
            Sergio Gómez Colmenarejo and
            Serkan Cabi and
            Caglar Gulcehre and
            Tom Le Paine and
            Andrew Cowie and
            Ziyu Wang and
            Bilal Piot and
            Nando de Freitas},
    year={2020},
    journal={arXiv preprint arXiv:2006.00979},
    url={https://arxiv.org/abs/2006.00979},
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

小白学运营

小白学运营

刘异、伍斌、赵强 / 电子工业出版社 / 2015-9-1 / 49.00元

《小白学运营》是针对网络游戏行业,产品运营及数据分析工作的入门读物,主要为了帮助刚入行或有意从事游戏产品运营和数据分析的朋友。 《小白学运营》没有烦琐的理论阐述,更接地气。基础运营部分可以理解为入门新人的to do list;用户营销部分则是对用户管理的概述,从用户需求及体验出发,说明产品运营与用户管理的依附关系;数据分析实战中,侧重业务分析,着重阐述的是分析框架,以虚拟案例的方式进行陈述,......一起来看看 《小白学运营》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具