Calculate the frequencies of words, pairs of words and more in a Wikipedia dataset

栏目: IT技术 · 发布时间: 5年前

内容简介:Calculate the frequencies of words, pairs of words, etc. in a Wikipedia dataset. One use-case is to create lists of popular, different words to use in e.g. games, passphrase generation, etc.This crate is not published to crates.io yet so you will need to f

word-frequencies

Calculate the frequencies of words, pairs of words, etc. in a Wikipedia dataset. One use-case is to create lists of popular, different words to use in e.g. games, passphrase generation, etc.

Installation

This crate is not published to crates.io yet so you will need to first install Rust , clone this repository locally, then run:

cargo install --path . --force

This will put a word-frequencies binary into your $HOME/.cargo/bin folder, which you can then put into your PATH environment variable.

Usage

Run word-frequencies --help and e.g. word-frequencies split --help for usage instructions. Below is an end-to-end example of using word-frequencies to count unigrams (words) and bigrams (pairs of words), and then calculate the most frequent words.

1. Wikipedia dataset download

First download the Wikipedia dataset for the language that you care about.

2a. Mac and Linux command-line example

Let's assume the Wikipedia dataset is downloaded to $HOME/datasets/wikipedia/plwiki-20200113-cirrussearch-content.json.gz .

With this file downloaded, first split the file into multiple pieces, and also Unicode-normalize the input. The output files will be one line per Wikipedia article.

word-frequencies split \
    --input-path $HOME/datasets/wikipedia/plwiki-20200113-cirrussearch-content.json.gz \
    --output-dir $HOME/datasets/wikipedia/plwiki-20200113-split

After splitting you can create a frequencies file, which contains counts for unigrams (single words) and bigrams (pairs of words):

word-frequencies create-frequencies \
    --input-dir $HOME/datasets/wikipedia/plwiki-20200113-split \
    --output-file $HOME/datasets/wikipedia/plwiki-20200113-split/plwiki-20200113-frequencies.txt \
    --language pl

This will create a compressed file plwiki-20200113-frequencies.txt.gz . If you zless it you can see it contains counts that can let you build a language model if you'd like.

For now if you only care about the most popular K unigrams, e.g. top 10k words, you can run:

word-frequencies top-k-words \
    --number-of-words 10000 \
    --input-file $HOME/datasets/wikipedia/plwiki-20200113-split/plwiki-20200113-frequencies.txt.gz \
    --output-file $HOME/datasets/wikipedia/plwiki-20200113-split/plwiki-20200113-top-10k.txt

2b. Windows command-line example

TODO, works but need to write out commands and test it

Dictionary sources

English

From https://packages.debian.org/sid/wordlist download wamerican , wbritish , wcanadian standard lists (around 103k words each), then concatenate, sort, de-dupe:

cat wamerican/usr/share/dict/american-english \
    wbritish/usr/share/dict/british-english \
    wcanadian/usr/share/dict/canadian-english | sort | uniq > en.txt

Note that http://wordlist.aspell.net/12dicts-readme/ is another great resource for curated English words.

Polish

The Debian wpolish dictionary is surprisingly low quality so I scraped Wiktionary to build a Polish dictionary, see below.

Using Wiktionary

I haven't ironed this out but here is some quick Python code to convert Wiktionary dataset dumps (from the same links as above) to dictionary files. You can then put these into the "dictionaries" sub-folder and re-run.

#!/usr/bin/env python3

import json
import gzip
import unicodedata


def main():
    main_en()
    main_pl()


def main_pl():
    words = []
    with gzip.open("plwiktionary-20200113-cirrussearch-content.json.gz", "rb") as f:
        for line in f:
            data = json.loads(line)
            if "language" not in data:
                continue
            if " " in data["title"]:
                continue
            if "Szablon:język polski" not in data["template"]:
                continue
            word = unicodedata.normalize("NFKC", data["title"])
            words.append(word)
    words.sort()
    with open("pl.txt", "w") as f_out:
        for word in words:
            f_out.write("{0}\n".format(word))


def main_en():
    words = []
    with gzip.open("enwiktionary-20200113-cirrussearch-content.json.gz", "rb") as f:
        for line in f:
            data = json.loads(line)
            if "language" not in data:
                continue
            if " " in data["title"]:
                continue
            if "English" not in data["heading"]:
                continue
            word = unicodedata.normalize("NFKC", data["title"])
            words.append(word)
    words.sort()
    with open("en.txt", "w") as f_out:
        for word in words:
            f_out.write("{0}\n".format(word))


if __name__ == "__main__":
    main()

TODOs

  • Need tests.
  • Option to specify your own dictionary file, that way we don't need to keep adding dictionaries to the binary.
  • Very memory inefficient, need ~15GB RAM for English.
    • Try interning Strings, I think the string copying is a big culprit.
    • If still not good enough then use SQLite to count words.
  • Make minimum article count in create-frequencies an input parameter.
  • Once crate is published update installation instructions.

Testing commands for older English dataset

word-frequencies split \
    --input-path $HOME/datasets/wikipedia/enwiki-20191202-cirrussearch-content.json.gz \
    --output-dir $HOME/datasets/wikipedia/enwiki-20191202-split
word-frequencies create-frequencies \
    --input-dir $HOME/datasets/wikipedia/enwiki-20191202-split \
    --output-file $HOME/datasets/wikipedia/enwiki-20191202-split/enwiki-20191202-frequencies.txt \
    --language en
word-frequencies top-k-words \
    --number-of-words 10000 \
    --input-file $HOME/datasets/wikipedia/enwiki-20191202-split/enwiki-20191202-frequencies.txt.gz \
    --output-file $HOME/datasets/wikipedia/enwiki-20191202-split/enwiki-20191202-top-10k.txt
echo done

License

word-frequencies is distributed under the terms of the Apache License (Version 2.0). See LICENSE for details.


以上所述就是小编给大家介绍的《Calculate the frequencies of words, pairs of words and more in a Wikipedia dataset》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

创业无畏

创业无畏

彼得· 戴曼迪斯、史蒂芬· 科特勒 / 贾拥民 / 浙江人民出版社 / 2015-8 / 69.90元

 您是否有最大胆的商业梦想?您是否想把一个好主意快速转化为一家市值几百亿甚至几千亿元的公司?《创业无畏》不仅分享了成功创业家的真知灼见,更为我们绘制了一幅激情创业的行动路线图!  创业缺人手怎么办?如何解决钱的问题?把握指数型大众工具,互联网就是你车间,你的仓库。拥有好的创意,自然有人把钱“白白地送给你用”。当你大海捞针的时候,激励性大奖赛会让针自己跑到你的眼前来!  掌握指数级......一起来看看 《创业无畏》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

SHA 加密
SHA 加密

SHA 加密工具