Vibe: Video Human Pose Estimation

栏目: IT技术 · 发布时间: 4年前

内容简介:Check our YouTube videos below for more details.

VIBE: Video Inference for Human Body Pose and Shape Estimation [CVPR-2020]

Vibe: Video Human Pose Estimation Vibe: Video Human Pose Estimation

Check our YouTube videos below for more details.

Paper Video Qualitative Results
Vibe: Video Human Pose Estimation Vibe: Video Human Pose Estimation

VIBE: Video Inference for Human Body Pose and Shape Estimation ,

Muhammed Kocabas , Nikos Athanasiou , Michael J. Black ,

IEEE Computer Vision and Pattern Recognition, 2020

Features

V ideo I nference for B ody Pose and Shape E stimation (VIBE) is a video pose and shape estimation method. It predicts the parameters of SMPL body model for each frame of an input video. Pleaser refer to our arXiv report for further details.

This implementation:

  • has the demo and training code for VIBE implemented purely in PyTorch,
  • can work on arbitrary videos with multiple people,
  • supports both CPU and GPU inference (though GPU is way faster),
  • is fast, up-to 30 FPS on a RTX2080Ti (see this table ),
  • achieves SOTA results on 3DPW and MPI-INF-3DHP datasets,
  • includes Temporal SMPLify implementation.
  • includes the training code and detailed instruction on how to train it from scratch.

Vibe: Video Human Pose Estimation Vibe: Video Human Pose Estimation

Getting Started

VIBE has been implemented and tested on Ubuntu 18.04 with python >= 3.7. It supports both GPU and CPU inference. If you don't have a suitable device, try running our Colab demo.

Clone the repo:

git clone https://github.com/mkocabas/VIBE.git

Install the requirements using virtualenv or conda :

# pip
source scripts/install_pip.sh

# conda
source scripts/install_conda.sh

Running the Demo

We have prepared a nice demo code to run VIBE on arbitrary videos. First, you need download the required data(i.e our trained model and SMPL model parameters). To do this you can just run:

source scripts/prepare_data.sh

Then, running the demo is as simple as:

# Run on a local video
python demo.py --vid_file sample_video.mp4 --output_folder output/ --display

# Run on a YouTube video
python demo.py --vid_file https://www.youtube.com/watch?v=wPZP8Bwxplo --output_folder output/ --display

Refer to doc/demo.md for more details about the demo code.

Sample demo output with the --sideview flag:

Vibe: Video Human Pose Estimation

Google Colab

If you do not have a suitable environment to run this project then you could give Google Colab a try. It allows you to run the project in the cloud, free of charge. You may try our Colab demo using the notebook we have prepared:

Training

Run the commands below to start training:

source scripts/prepare_training_data.sh
python train.py --cfg configs/config.yaml

Note that the training datasets should be downloaded and prepared before running data processing script. Please see doc/train.md for details on how to prepare them.

Evaluation

Here we compare VIBE with recent state-of-the-art methods on 3D pose estimation datasets. Evaluation metric is Procrustes Aligned Mean Per Joint Position Error (PA-MPJPE) in mm.

Models 3DPW ↓ MPI-INF-3DHP ↓ H36M ↓
SPIN 59.2 67.5 41.1
Temporal HMR 76.7 89.8 56.8
VIBE 56.5 63.4 41.5
VIBE + 3DPW 51.9 64.6 41.4

See doc/eval.md to reproduce the results in this table or evaluate a pretrained model.

Citation

@inproceedings{kocabas2019vibe,
  title={VIBE: Video Inference for Human Body Pose and Shape Estimation},
  author={Kocabas, Muhammed and Athanasiou, Nikos and Black, Michael J.},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}

License

This code is available for non-commercial scientific research purposes as defined in the LICENSE file . By downloading and using this code you agree to the terms in the LICENSE . Third-party datasets and software are subject to their respective licenses.

References

We indicate if a function or script is borrowed externally inside each file. Here are some great resources we benefit:

  • Pretrained HMR and some functions are borrowed from SPIN .
  • SMPL models and layer is from SMPL-X model .
  • Some functions are borrowed from Temporal HMR .
  • Some functions are borrowed from HMR-pytorch .
  • Some functions are borrowed from Kornia .
  • Pose tracker is from STAF .

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

破壁书

破壁书

邵燕君 主编、王玉玊 副主编 / 生活•读书•新知三联书店 生活书店出版有限公司 / 2018-6-1 / 88.00

*一本神奇的网络文化辞典,解读二次元、宅文化、网文、游戏、流行文化,让人大开眼界; *245个网络文化核心关键词,追本溯源,讲述背后文化演变与有趣故事,读来恍然大悟,知其然,更知其所以然; *北大中文系学术团队数年研究成果,曹文轩、韩少功、李敬泽、猫腻顾问推荐,三联生活书店花3年倾力打造; *百度 查不到、词条不过时、形式新颖丰富、文章可读性强、学术上经得起推敲,五大特点打造权威......一起来看看 《破壁书》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具