Batch vs Stochastic Gradient Descent
Learn difference between Batch & Stochastic Gradient Descent and choose best descent for your model.
May 31 ·4min read
Before diving into Gradient Descent, we’ll look how a Linear Regression model deals with Cost function. Main motive to reach Global minimum is to minimize Cost function which is given by,
Here, Hypothesis represents linear equation where, theta(0) is the bias AKA intercept and theta(1) are the weight(slope) given to the feature ‘x’.
Weights and intercept are randomly initialized taking baby step to reach minimum point. An important parameter in Gradient Descent is the size of the steps, determined by the learning rate hyper-parameter. It’s important to note that if we set high value of learning rate, point will end up taking large steps and probably will not reach global minimum( having large errors). On the other hand, if we take small value of learning rate, purple point will take large amount of time to reach global minimum. Therefore, Optimal learning rate should be taken.
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
ASO优化道与术
ASO100研究院 / 东方出版中心 / 2017-6 / 49
应用商店搜索优化(App Store Optimization),简称ASO,广义上是指针对App在应用商店中的搜索、榜单、推荐等流量入口进行优化,有效提升用户量的行为。 本书作为本领域的第一本读物,主要针对App最常见的推广平台:iOS及Android,从多个维度,全面地介绍了ASO的操作方式。针对App Store推广的特殊性,特别解读了精品推荐、审核规则等iOS推广重点技能,同时率先带......一起来看看 《ASO优化道与术》 这本书的介绍吧!