Batch vs Stochastic Gradient Descent
Learn difference between Batch & Stochastic Gradient Descent and choose best descent for your model.
May 31 ·4min read
Before diving into Gradient Descent, we’ll look how a Linear Regression model deals with Cost function. Main motive to reach Global minimum is to minimize Cost function which is given by,
Here, Hypothesis represents linear equation where, theta(0) is the bias AKA intercept and theta(1) are the weight(slope) given to the feature ‘x’.
Weights and intercept are randomly initialized taking baby step to reach minimum point. An important parameter in Gradient Descent is the size of the steps, determined by the learning rate hyper-parameter. It’s important to note that if we set high value of learning rate, point will end up taking large steps and probably will not reach global minimum( having large errors). On the other hand, if we take small value of learning rate, purple point will take large amount of time to reach global minimum. Therefore, Optimal learning rate should be taken.
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
JavaScript编程精解
Marijn Haverbeke / 徐涛 / 机械工业出版社华章公司 / 2012-10-1 / 49.00元
如果你只想阅读一本关于JavaScript的图书,那么本书应该是你的首选。本书由世界级JavaScript程序员撰写,JavaScript之父和多位JavaScript专家鼎力推荐。本书适合作为系统学习JavaScript的参考书,它在写作思路上几乎与现有的所有同类书都不同,打破常规,将编程原理与运用规则完美地结合在一起,而且将所有知识点与一个又一个经典的编程故事融合在一起,读者可以在轻松的游戏式......一起来看看 《JavaScript编程精解》 这本书的介绍吧!