Batch vs Stochastic Gradient Descent

栏目: IT技术 · 发布时间: 4年前

Batch vs Stochastic Gradient Descent

Learn difference between Batch & Stochastic Gradient Descent and choose best descent for your model.

May 31 ·4min read

Batch vs Stochastic Gradient Descent

Photo by Bailey Zindel on Unsplash

Before diving into Gradient Descent, we’ll look how a Linear Regression model deals with Cost function. Main motive to reach Global minimum is to minimize Cost function which is given by,

Batch vs Stochastic Gradient Descent

Here, Hypothesis represents linear equation where, theta(0) is the bias AKA intercept and theta(1) are the weight(slope) given to the feature ‘x’.

Batch vs Stochastic Gradient Descent

Fig: 1

Weights and intercept are randomly initialized taking baby step to reach minimum point. An important parameter in Gradient Descent is the size of the steps, determined by the learning rate hyper-parameter. It’s important to note that if we set high value of learning rate, point will end up taking large steps and probably will not reach global minimum( having large errors). On the other hand, if we take small value of learning rate, purple point will take large amount of time to reach global minimum. Therefore, Optimal learning rate should be taken.


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

研究之美

研究之美

[美] Donald E. Knuth / 高博 / 电子工业出版社 / 2012-1-1 / 49.00元

《研究之美》是计算机科学大师、“算法分析之父”高德纳(Donald E.Knuth)在20世纪70年代旅居挪威时撰写的适用于计算机科学的一种全新基础数学结构的情景小品。全书以一对追求自由精神生活的青年男女为主人公,展开了一段对于该种全新结构的发现和构造的对白。在此过程中,本书充分展示了计算机科学的从业人员进行全新领域探索时所必备的怀疑、立论、构造、证明、归纳、演绎等逻辑推理和深入反思的能力。《研究......一起来看看 《研究之美》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

在线进制转换器
在线进制转换器

各进制数互转换器

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具