Batch vs Stochastic Gradient Descent

栏目: IT技术 · 发布时间: 5年前

Batch vs Stochastic Gradient Descent

Learn difference between Batch & Stochastic Gradient Descent and choose best descent for your model.

May 31 ·4min read

Batch vs Stochastic Gradient Descent

Photo by Bailey Zindel on Unsplash

Before diving into Gradient Descent, we’ll look how a Linear Regression model deals with Cost function. Main motive to reach Global minimum is to minimize Cost function which is given by,

Batch vs Stochastic Gradient Descent

Here, Hypothesis represents linear equation where, theta(0) is the bias AKA intercept and theta(1) are the weight(slope) given to the feature ‘x’.

Batch vs Stochastic Gradient Descent

Fig: 1

Weights and intercept are randomly initialized taking baby step to reach minimum point. An important parameter in Gradient Descent is the size of the steps, determined by the learning rate hyper-parameter. It’s important to note that if we set high value of learning rate, point will end up taking large steps and probably will not reach global minimum( having large errors). On the other hand, if we take small value of learning rate, purple point will take large amount of time to reach global minimum. Therefore, Optimal learning rate should be taken.


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

面向对象分析与设计

面向对象分析与设计

Grady Booch、Robert A. Maksimchuk、Michael W. Engel、Bobbi J. Young、Jim Conallen、Kelli A. Houston / 王海鹏、潘加宇 / 人民邮电出版社 / 2009-8 / 79.00元

《面向对象分析与设计(第3版)》是UML创始人Grady Booch的代表作之一,书中介绍的概念都基于牢固的理论基础。同时,《面向对象分析与设计(第3版)》又是一本注重实效的书,面向架构师和软件开发者等软件工程实践者的实际需要。《面向对象分析与设计(第3版)》通过大量例子说明了基本概念,解释了方法,并展示了在不同领域的成功应用。全书分为理论和应用两部分。理论部分深刻剖析了面向对象分析与设计(OOA......一起来看看 《面向对象分析与设计》 这本书的介绍吧!

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

html转js在线工具
html转js在线工具

html转js在线工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具