Batch vs Stochastic Gradient Descent
Learn difference between Batch & Stochastic Gradient Descent and choose best descent for your model.
May 31 ·4min read
Before diving into Gradient Descent, we’ll look how a Linear Regression model deals with Cost function. Main motive to reach Global minimum is to minimize Cost function which is given by,
Here, Hypothesis represents linear equation where, theta(0) is the bias AKA intercept and theta(1) are the weight(slope) given to the feature ‘x’.
Weights and intercept are randomly initialized taking baby step to reach minimum point. An important parameter in Gradient Descent is the size of the steps, determined by the learning rate hyper-parameter. It’s important to note that if we set high value of learning rate, point will end up taking large steps and probably will not reach global minimum( having large errors). On the other hand, if we take small value of learning rate, purple point will take large amount of time to reach global minimum. Therefore, Optimal learning rate should be taken.
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
社群营销与运营/互联网+新媒体营销规划丛书
秦阳//秋叶|总主编:秋叶 / 人民邮电出版社 / 2017-5 / 45.00元
《社群营销与运营》共分6章。第1章重点介绍了社群营销的起因、概念、构成、价值和评估模型,引导读者全面认识社群以及社群营销;第2章介绍了如何从无到有、从小到大建设一个社群的手法和注意事项;第3章重点介绍维持社群活跃度的各种技巧;第4章介绍了组织一场社群线下活动五个阶段的执行方案;第5章介绍了如何从无到有、由弱到强地构建社群运营团队;第6章介绍如何正确看待社群商业变现以及社群商业变现的三大模式和四个基......一起来看看 《社群营销与运营/互联网+新媒体营销规划丛书》 这本书的介绍吧!