内容简介:资源 | 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)
编辑 | MingMing
尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展。最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整理了一份迄今为止我发现的最好的教程内容列表。
通过教程中的简介内容讲述一个概念。避免了包括书籍章节涵盖范围广,以及研究论文在教学理念上做的不好的特点。
我把这篇文章分成四个部分:机器学习、NLP、Python和数学。
每个部分中都包含了一些主题文章,但是由于材料巨大,每个部分不可能包含所有可能的主题,我将每个主题限制在5到6个教程中。(由于微信不能插入外链,请点击“阅读原文”查看原文)
机器学习
-
Machine Learning is Fun! (medium.com/@ageitgey)
-
Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)
-
An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)
-
A Gentle Guide to Machine Learning (monkeylearn.com)
-
Which machine learning algorithm should I use? (sas.com)
激活和损失函数
-
Sigmoid neurons (neuralnetworksanddeeplearning.com)
-
What is the role of the activation function in a neural network? (quora.com)
-
Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange.com)
-
Activation functions and it’s types-Which is better? (medium.com)
-
Making Sense of Logarithmic Loss (exegetic.biz)
-
Loss Functions (Stanford CS231n)
-
L1 vs. L2 Loss function (rishy.github.io)
-
The cross-entropy cost function (neuralnetworksanddeeplearning.com)
Bias
-
Role of Bias in Neural Networks (stackoverflow.com)
-
Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)
-
What is bias in artificial neural network? (quora.com)
感知器
-
Perceptrons (neuralnetworksanddeeplearning.com)
-
The Perception (natureofcode.com)
-
Single-layer Neural Networks (Perceptrons) (dcu.ie)
-
From Perceptrons to Deep Networks (toptal.com)
回归
-
Introduction to linear regression analysis (duke.edu)
-
Linear Regression (ufldl.stanford.edu)
-
Linear Regression (readthedocs.io)
-
Logistic Regression (readthedocs.io)
-
Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery.com)
-
Logistic Regression Tutorial for Machine Learning(machinelearningmastery.com)
-
Softmax Regression (ufldl.stanford.edu)
梯度下降算法
-
Learning with gradient descent (neuralnetworksanddeeplearning.com)
-
Gradient Descent (iamtrask.github.io)
-
How to understand Gradient Descent algorithm (kdnuggets.com)
-
An overview of gradient descent optimization algorithms(sebastianruder.com)
-
Optimization: Stochastic Gradient Descent (Stanford CS231n)
生成式学习
-
Generative Learning Algorithms (Stanford CS229)
-
A practical explanation of a Naive Bayes classifier (monkeylearn.com)
支持向量机
-
An introduction to Support Vector Machines (SVM) (monkeylearn.com)
-
Support Vector Machines (Stanford CS229)
-
Linear classification: Support Vector Machine, Softmax (Stanford 231n)
反向传播
-
Yes you should understand backprop (medium.com/@karpathy)
-
Can you give a visual explanation for the back propagation algorithm for neural - networks? (github.com/rasbt)
-
How the backpropagation algorithm works(neuralnetworksanddeeplearning.com)
-
Backpropagation Through Time and Vanishing Gradients (wildml.com)
-
A Gentle Introduction to Backpropagation Through Time(machinelearningmastery.com)
-
Backpropagation, Intuitions (Stanford CS231n)
深度学习
-
Deep Learning in a Nutshell (nikhilbuduma.com)
-
A Tutorial on Deep Learning (Quoc V. Le)
-
What is Deep Learning? (machinelearningmastery.com)
-
What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep - Learning? (nvidia.com)
优化和降维
-
Seven Techniques for Data Dimensionality Reduction (knime.org)
-
Principal components analysis (Stanford CS229)
-
Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)
-
How to train your Deep Neural Network (rishy.github.io)
长短期记忆网络
-
A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery.com)
-
Understanding LSTM Networks (colah.github.io)
-
Exploring LSTMs (echen.me)
-
Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)
卷积神经网络
-
Introducing convolutional networks (neuralnetworksanddeeplearning.com)
-
Deep Learning and Convolutional Neural Networks(medium.com/@ageitgey)
-
Conv Nets: A Modular Perspective (colah.github.io)
-
Understanding Convolutions (colah.github.io)
递归神经网络
-
Recurrent Neural Networks Tutorial (wildml.com)
-
Attention and Augmented Recurrent Neural Networks (distill.pub)
-
The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io)
-
A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)
强化学习
-
Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya.com)
-
A Tutorial for Reinforcement Learning (mst.edu)
-
Learning Reinforcement Learning (wildml.com)
-
Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)
生成对抗网络
-
What’s a Generative Adversarial Network? (nvidia.com)
-
Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium.com/@ageitgey)
-
An introduction to Generative Adversarial Networks (with code in - TensorFlow) (aylien.com)
-
Generative Adversarial Networks for Beginners (oreilly.com)
多任务学习
-
An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder.com)
自然语言处理
-
A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)
-
The Definitive Guide to Natural Language Processing (monkeylearn.com)
-
Introduction to Natural Language Processing (algorithmia.com)
-
Natural Language Processing Tutorial (vikparuchuri.com)
-
Natural Language Processing (almost) from Scratch (arxiv.org)
深入学习和NLP
-
Deep Learning applied to NLP (arxiv.org)
-
Deep Learning for NLP (without Magic) (Richard Socher)
-
Understanding Convolutional Neural Networks for NLP (wildml.com)
-
Deep Learning, NLP, and Representations (colah.github.io)
-
Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)
-
Understanding Natural Language with Deep Neural Networks Using Torch(nvidia.com)
-
Deep Learning for NLP with Pytorch (pytorich.org)
词向量
-
Bag of Words Meets Bags of Popcorn (kaggle.com)
-
On word embeddings Part I, Part II, Part III (sebastianruder.com)
-
The amazing power of word vectors (acolyer.org)
-
word2vec Parameter Learning Explained (arxiv.org)
-
Word2Vec Tutorial — The Skip-Gram Model, Negative Sampling(mccormickml.com)
Encoder-Decoder
-
Attention and Memory in Deep Learning and NLP (wildml.com)
-
Sequence to Sequence Models (tensorflow.org)
-
Sequence to Sequence Learning with Neural Networks (NIPS 2014)
-
Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)
-
How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers(machinelearningmastery.com)
-
tf-seq2seq (google.github.io)
Python
-
7 Steps to Mastering Machine Learning With Python (kdnuggets.com)
-
An example machine learning notebook (nbviewer.jupyter.org)
例子
-
How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery.com)
-
Implementing a Neural Network from Scratch in Python (wildml.com)
-
A Neural Network in 11 lines of Python (iamtrask.github.io)
-
Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets.com)
Demonstration of Memory with a Long Short-Term Memory Network in - Python (machinelearningmastery.com) -
How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (machinelearningmastery.com)
-
How to Learn to Add Numbers with seq2seq Recurrent Neural Networks(machinelearningmastery.com)
Scipy和numpy
-
Scipy Lecture Notes (scipy-lectures.org)
-
Python Numpy Tutorial (Stanford CS231n)
-
An introduction to Numpy and Scipy (UCSB CHE210D)
-
A Crash Course in Python for Scientists (nbviewer.jupyter.org)
scikit-learn
-
PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)
-
scikit-learn Classification Algorithms (github.com/mmmayo13)
-
scikit-learn Tutorials (scikit-learn.org)
-
Abridged scikit-learn Tutorials (github.com/mmmayo13)
Tensorflow
-
Tensorflow Tutorials (tensorflow.org)
-
Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm)
-
TensorFlow: A primer (metaflow.fr)
-
RNNs in Tensorflow (wildml.com)
-
Implementing a CNN for Text Classification in TensorFlow (wildml.com)
-
How to Run Text Summarization with TensorFlow (surmenok.com)
PyTorch
-
PyTorch Tutorials (pytorch.org)
-
A Gentle Intro to PyTorch (gaurav.im)
-
Tutorial: Deep Learning in PyTorch (iamtrask.github.io)
-
PyTorch Examples (github.com/jcjohnson)
-
PyTorch Tutorial (github.com/MorvanZhou)
-
PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)
数学
-
Math for Machine Learning (ucsc.edu)
-
Math for Machine Learning (UMIACS CMSC422)
线性代数
-
An Intuitive Guide to Linear Algebra (betterexplained.com)
-
A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)
-
Understanding the Cross Product (betterexplained.com)
-
Understanding the Dot Product (betterexplained.com)
-
Linear Algebra for Machine Learning (U. of Buffalo CSE574)
-
Linear algebra cheat sheet for deep learning (medium.com)
-
Linear Algebra Review and Reference (Stanford CS229)
概率
-
Understanding Bayes Theorem With Ratios (betterexplained.com)
-
Review of Probability Theory (Stanford CS229)
-
Probability Theory Review for Machine Learning (Stanford CS229)
-
Probability Theory (U. of Buffalo CSE574)
-
Probability Theory for Machine Learning (U. of Toronto CSC411)
微积分
-
How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)
-
How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained.com)
-
Vector Calculus: Understanding the Gradient (betterexplained.com)
-
Differential Calculus (Stanford CS224n)
-
Calculus Overview (readthedocs.io)
原文链接 https://unsupervisedmethods.com/over-150-of-the-best-machine-learning-nlp-and-python-tutorials-ive-found-ffce2939bd78
资源推荐
资源 | 盘点GitHub最著名的20个Python机器学习项目
资源 | 做一款炫酷的机器人需要哪些学习资源(机器人资源Awesome系列)
资源 | 想用Python学机器学习?Google大神替你写好了所有的编程示范代码
资源 | 亚马逊 AI 主任科学家李沐:动手学深度学习视频大全
资源 | Yann LeCun最新演讲:大脑是如何高效学习的?(附PPT+视频)
重磅 | 128篇论文,21大领域,深度学习最值得看的资源全在这了
爆款 | Medium上6900个赞的AI学习路线图,让你快速上手机器学习
Chatbot大牛推荐:AI、机器学习、深度学习必看9大入门视频
葵花宝典之机器学习:全网最重要的AI资源都在这里了(大牛,研究机构,视频,博客,书籍,Quora......)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- MOSS 2018 回顾:向 40 余个开源项目捐赠 97 万美元
- 从 0 开始机器学习 - 机器学习算法诊断
- 浅谈机器学习原理及机器学习平台
- 机器学习基础概念和统计机器学习基本算法
- [机器学习]机器学习笔记整理09- 基于SVM图像识别
- 机器的“无限有趣空间”:人类将无法理解机器的崛起
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。