TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

栏目: IT技术 · 发布时间: 4年前

内容简介:十三 发自 凹非寺量子位 报道 | 公众号 QbitAI4年半,全球下载量突破

十三 发自 凹非寺

量子位 报道 | 公众号 QbitAI

4年半,全球下载量突破 1个亿 ,仅过去1个月,便有超过 1000万 的下载。

这就是TensorFlow提交的最新成绩单。

谷歌AI负责人 Jeff Dean (传奇“姐夫”)非常激动:

当我们在2015年11月,将TensorFlow作为一个开源项目发布时,我们希望外界机器学习研究人员在使用它时,和我们在 Google AI 的体验一样。

看到它的下载量突破1亿,我感到非常自豪。

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

Keras 作者、谷歌深度学习专家 François Chollet 也发推文表示:

仅过去的一个月,就有超过1000万次的下载量,它正在加速发展。

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

当然,毫无悬念的,网友们在姐夫推特下面写下了老梗:

但我们现在在用Pytorch。

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

为什么TensorFlow能取得如此成绩?

在姐夫的推特中,还提到了2015年发布TensorFlow时的博客。

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

这一天,谷歌发布了TensorFlow的“白皮书”,并很快将其开源。

而它的故事,也就从这一时刻开始谱写。

凭借谷歌不容小觑的影响力,消息在技术圈内迅速传开,然而在圈外,却没有想象中的那么轰动。

直到2016年,AlphaGo 引爆了大众对人工智能的热情,AI 也逐渐渗透进各行各业中,Tensorflow 则成为一个现象级的技术名词,被普通大众所熟知。

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

Tensorflow在2017年2月发布了1.0.0版本,也标志着稳定版的诞生。

早期的TensorFlow还是有不少被人诟病的地方,比如API的稳定性、效率和基于静态计算图的编程上的复杂性等等。

历经几年的时间,TensorFlow不断地优化,同时吸取了像Pytorch这样框架的有点,逐步地在解决这些缺点。

2019年,谷歌推出了TensorFlow 2.0,这是平台发展历程中,称得上是一个重要的里程碑。几大亮点包括:

  • 专注于简单性和易用性,大大简化API
  • 方便开发人员使用Keras 和 eager execution 轻松构建模型
  • 提高TensorFlow Lite 和 TensorFlow.js 部署模型的能力

直到现在,TensorFlow 已经迭代到 2.2.0 版本,更加强调性能与生态系统的兼容性,以及核心库的稳定性。

除了性能上的不断优化,TensorFlow的成功也得益于它的生态。

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

TensorFlow 可以说,建立了一个 非常强大的生态系统 ,包含各类库、扩展以及工具,能够满足研究人员和开发人员实现端到端机器学习模型的各种需求。

对于研究人员来说,TensorFlow提供了最尖端的机器学习研究模型,例如,T5模型可以实现语音到文本的转换。

产品开发人员可结合使用TensorFlow与Keras等 工具 构建各种应用产品。TensorFlow Hub还提供大量预训练模型。

此外,开发人员可以利用TensorFlow Lite等工具,轻松将机器学习模型部署到各种设备上。

道阻且长,比任何时候都具有挑战性

TensorFlow取得如此成就固然是值得赞叹,但与此同时,它所面临的挑战也是巨大的——甚至是前所未有的。

除了自身性能、易用性和生态等方面的发展因素外,更多的挑战可能来自同类深度学习框架的竞争。

包括Pytorch、MXNet、Caffe、Keras等等,它们自身有着各自的亮点和特性,这也就造成了用户选择方面的差异。

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

那么,这些开源深度学习框架之间的竞争如何?

鉴于不是所有框架都公布了“下载量”这个指标,我们从GitHub上的关注度来做个对比。

若是有更好的对比指标,欢迎在评论区交流。

首先是TensorFlow,GitHub上的小星星已经达到了 14.4万

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

Keras在GitHub上的小星星为 4.82万

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

Pytorch在GitHub上的小星星为 3.86万

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

Caffe在GitHub上的小星星为 3.02万

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

MXNet在GitHub的小星星为 1.87万

TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子

如根据GitHub小星星的数量来决定开源深度学习框架的流行程度,那么排名就是:

TensorFlow> Keras >Pytorch>Caffe>MXNet

如此之外,国内的深度学习框架也在逐步发力: 百度飞桨华为 MindSpore旷视 MegEngine清华 Jittor

在GitHub上的小星星分别是11.3K、1K、2.1K和1.4K。

对于全球深度学习框架的汹涌发展,TensorFlow全球产品总监 Kemal El Moujahid 就曾表示:

我们非常乐于看到行业取得发展。现在,全球范围来看,虽然机器学习和 AI 的普及度还处在初期阶段,但是我们不能忘了最终的目标:在全球推广普及机器学习和 AI。

参考链接

https://twitter.com/JeffDean/status/1260077064847147011

https://twitter.com/fchollet/status/1260073069424504832

https://www.cnblogs.com/dittoyi/p/11032423.html

https://baijiahao.baidu.com/s?id=1661056719866435618&wfr=spider&for=pc

版权所有,未经授权不得以任何形式转载及使用,违者必究。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

互联网寡头战争

互联网寡头战争

屈运栩 / 浙江大学出版社 / 2017-5-1 / CNY 49.00

本书意在复盘2015年下半年资本寒冬袭来之后,互联网行业发生的小巨头并购等连锁反应,揭示其背后推手——以BAT(百度、阿里巴巴、腾讯)为首的互联网巨头在零售、出行、本地生活、金融等行业的布局竞争,记录和呈现行业新贵的选择与博弈,深度剖析中国互联网生态的演进过程。一起来看看 《互联网寡头战争》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具