内容简介:Let’s dive deep into the architectural details of all the different EfficientNet Models and find out how they differ from each other.I was scrolling through notebooks in a Kaggle competition and found almost everyone was using EfficientNet as their backbon
Let’s dive deep into the architectural details of all the different EfficientNet Models and find out how they differ from each other.
May 24 ·6min read
I was scrolling through notebooks in a Kaggle competition and found almost everyone was using EfficientNet as their backbone which I had not heard about till then. It is introduced by Google AI in this paper and they tried to propose a method that is more efficient as suggested by its name while improving the state of the art results. Generally, the models are made too wide, deep, or with a very high resolution. Increasing these characteristics helps the model initially but it quickly saturates and the model made just has more parameters and is therefore not efficient. In EfficientNet they are scaled in a more principled way i.e. gradually everything is increased.
Did not understand what going on? Don’t worry you will once you see the architecture. But first, let’s see the results they got with this.
With considerably fewer numbers of parameters, the family of models are efficient and also provide better results. So now we have seen why these might become the standard pre-trained model but something’s missing. I remember an article by Raimi Karim where he showed the architectures of pre-trained models and that helped me a lot in understanding them and creating similar architectures.
As I could not find one like this on the net, I decided to understand it and create one for all of you.
Common Things In All
The first thing is any network is its stem after which all the experimenting with the architecture starts which is common in all the eight models and the final layers.
以上所述就是小编给大家介绍的《Complete Architectural Details of all EfficientNet Models》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
算法分析-有效的学习方法(影印版)
Jeffrey J.McConnell / 高等教育出版社 / 2003-03-01 / 28.0
本书主要目标是提高读者关于算法对程序效率的影响等问题的认知水平,并培养读者分析程序中的算法所必需的技巧。各章材料以激发读者有效的、协同的学习方法的形式讲述。通过全面的论述和完整的数学推导,本书帮助读者最大限度地理解基本概念。 本书内容包括促使学生参与其中的大量程序设计课题。书中所有算法以伪码形式给出,使得具备条件表达式、循环与递归方面知识的读者均易于理解。本书以简洁的写作风格向读者介绍了兼具......一起来看看 《算法分析-有效的学习方法(影印版)》 这本书的介绍吧!