Train an Image Classifier using Keras.

栏目: IT技术 · 发布时间: 4年前

内容简介:I have used sequential API to stack multiple layers of convolution, max-pooling layers with a flatten as well as some dense layers.I strongly recommend you to first build your basics of the working of CNN and get used to all the terminologies that are comm

I have used sequential API to stack multiple layers of convolution, max-pooling layers with a flatten as well as some dense layers.

I strongly recommend you to first build your basics of the working of CNN and get used to all the terminologies that are common in CNNs.

Let’s look at the architecture in detail.

The first layer is a Convolutional Layer that will take an image as an input of size (300 * 300* 3). Then using the activation argument we can apply different activation functions like ‘relu’, ‘tanh’, ‘sigmoid’, ‘softmax’ e.t.c, here I have applied ‘relu’ activation function.

Let’s talk about the number and size of the filters in the first layer we have used.

Through a Kernel size parameter, we could set the size of the filter as we have set it as (5*5), and using filters parameter we could set the number of filters we want to use and in our architecture, it is set to 32.

Now the second layer is a Maxpooling layer that can be applied simply by calling the MaxPooling2D function.

Similarly the third and the fourth layers are the Convolutional and the Maxpooling layers respectively.

Now we’ll flatten out the feature map using flatten function so that we could use those extracted features as an input to the Multi-Layer Perceptron for the classification.

After flattening out the feature map I have used 3 hidden layers that have 128, 64, and 32 number of neurons respectively.

You could build these hidden layers easily with the help of the Dense() method, also you could pass the activation function that you want to apply.

In the end, the last layer also called an Output layer has 2 neurons that give out the likelihood of two classes.

Check that I have used the Softmax activation function in the last layer as it converts the final information in the probability distribution for multiple classes.

Now let’s see the summary of our model using a summary() method.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

以奋斗者为本

以奋斗者为本

黄卫伟 / 中信出版社 / 2014-11-1 / 68.00元

《以奋斗者为本:华为公司人力资源管理纲要》传承于《华为公司基本法》,华为管理层25年人力资源管理思想精髓,5年整理,华为公司内训教材,首次大公开!作为华为公司内部培训教材,原汁原味,是继《华为基本法》之后华为的标志性著作,对国内外企业管理者&研究者具有高度的研究及借鉴价值。《以奋斗者为本:华为公司人力资源管理纲要》由华为公司首席管理科学家主编,华为高管及顾问参与编著,华为管理层25年实践,权威出品......一起来看看 《以奋斗者为本》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

在线进制转换器
在线进制转换器

各进制数互转换器

SHA 加密
SHA 加密

SHA 加密工具