Train an Image Classifier using Keras.

栏目: IT技术 · 发布时间: 4年前

内容简介:I have used sequential API to stack multiple layers of convolution, max-pooling layers with a flatten as well as some dense layers.I strongly recommend you to first build your basics of the working of CNN and get used to all the terminologies that are comm

I have used sequential API to stack multiple layers of convolution, max-pooling layers with a flatten as well as some dense layers.

I strongly recommend you to first build your basics of the working of CNN and get used to all the terminologies that are common in CNNs.

Let’s look at the architecture in detail.

The first layer is a Convolutional Layer that will take an image as an input of size (300 * 300* 3). Then using the activation argument we can apply different activation functions like ‘relu’, ‘tanh’, ‘sigmoid’, ‘softmax’ e.t.c, here I have applied ‘relu’ activation function.

Let’s talk about the number and size of the filters in the first layer we have used.

Through a Kernel size parameter, we could set the size of the filter as we have set it as (5*5), and using filters parameter we could set the number of filters we want to use and in our architecture, it is set to 32.

Now the second layer is a Maxpooling layer that can be applied simply by calling the MaxPooling2D function.

Similarly the third and the fourth layers are the Convolutional and the Maxpooling layers respectively.

Now we’ll flatten out the feature map using flatten function so that we could use those extracted features as an input to the Multi-Layer Perceptron for the classification.

After flattening out the feature map I have used 3 hidden layers that have 128, 64, and 32 number of neurons respectively.

You could build these hidden layers easily with the help of the Dense() method, also you could pass the activation function that you want to apply.

In the end, the last layer also called an Output layer has 2 neurons that give out the likelihood of two classes.

Check that I have used the Softmax activation function in the last layer as it converts the final information in the probability distribution for multiple classes.

Now let’s see the summary of our model using a summary() method.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Ajax修炼之道

Ajax修炼之道

(美)哥特兰、高伯瑞斯、艾米亚 / 徐锋,胡冰 / 电子工业出版社 / 2006-4 / 29.8

Ajax将静态Web页面转变为充满交互的应用。现在您不需要牺牲Web应用程序部署的简单性,就可以将“胖”客户端应用程序部署到客户端。不过对于很多人业说,Ajax看起来很难。这就是我们撰写本书的原因。作为实践的指导,本书揭开了Ajax神秘的面纱,教您如何以简单的方式使用Ajax。本书内容覆盖了DHTML、Javascript和闻名已久的XmlHttp Request回调技术的基础知识。您将了解如何将......一起来看看 《Ajax修炼之道》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

SHA 加密
SHA 加密

SHA 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试