sklearn保存模型-【老鱼学sklearn】

栏目: Python · 发布时间: 6年前

内容简介:sklearn保存模型-【老鱼学sklearn】

训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步。

比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要根据训练好的房价模型来预测用户房子的价格。

这样就需要在训练模型后把模型保存起来,在使用模型时把模型读取出来对输入的数据进行预测。

这里保存和读取模型有两种方法,都非常简单,差别在于保存和读取速度的快慢上,因为有一个是利用了多进程机制,下面我们分别来看一下。

创建模型

首先我们创建模型并训练数据:

from sklearn.datasets import load_digits
from sklearn.svm import SVC

# 加载数据
digits = load_digits()
X = digits.data
y = digits.target

model = SVC()
model.fit(X, y)

用pickle读写模型

pickle是 python 中用于数据序列化的模块,因此,对于模型的序列化也可以用此模块来进行:

import pickle
# 以写二进制的方式打开文件
file = open("D:/data/python/model.pickle", "wb")
# 把模型写入到文件中
pickle.dump(model, file)
# 关闭文件
file.close()

这样会创建D:/data/python/model.pickle的文件,大家可以自己去尝试下看看,我这边生成的文件大概1M左右。

有了模型文件之后,在进行预测时我们就不需要进行训练了,而只要把这个训练好的模型文件读取出来,然后直接进行预测就可以:

import pickle
# 以读二进制的方式打开文件
file = open("D:/data/python/model.pickle", "rb")
# 把模型从文件中读取出来
model = pickle.load(file)
# 关闭文件
file.close()

# 用模型进行预测
from sklearn.datasets import load_digits
digits = load_digits()
X = digits.data
y = digits.target

print("预测值:", model.predict(X[15:20]))
print("实际值:", y[15:20])

输出为:

预测值: [5 6 7 8 9]
实际值: [5 6 7 8 9]

用joblib进行模型的读写

直接上代码:

from sklearn.datasets import load_digits
from sklearn.svm import SVC

# 用模型进行训练
digits = load_digits()
X = digits.data
y = digits.target
model = SVC()
model.fit(X, y)

# 用joblib保存模型
from sklearn.externals import joblib
joblib.dump(model, "D:/data/python/model.joblib")

这样就会生成D:/data/python/model.joblib文件,看起来比pickle生成的文件大一点点。

读取模型:

# 用joblib读取模型
from sklearn.externals import joblib
model = joblib.load("D:/data/python/model.joblib")

# 对数据进行预测
from sklearn.datasets import load_digits
digits = load_digits()
X = digits.data
y = digits.target

print("预测值:", model.predict(X[15:20]))
print("实际值:", y[15:20])

输出为:

预测值: [5 6 7 8 9]
实际值: [5 6 7 8 9]

看起来也很简单,同pickle的区别是joblib会以多进程方式来进行,据说性能会好些。


以上所述就是小编给大家介绍的《sklearn保存模型-【老鱼学sklearn】》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Effective java 中文版(第2版)

Effective java 中文版(第2版)

Joshua Bloch / 俞黎敏 / 机械工业出版社 / 2009-1-1 / 52.00元

本书介绍了在Java编程中78条极具实用价值的经验规则,这些经验规则涵盖了大多数开发人员每天所面临的问题的解决方案。通过对Java平台设计专家所使用的技术的全面描述,揭示了应该做什么,不应该做什么才能产生清晰、健壮和高效的代码。 本书中的每条规则都以简短、独立的小文章形式出现,并通过例子代码加以进一步说明。本书内容全面,结构清晰,讲解详细。可作为技术人员的参考用书。一起来看看 《Effective java 中文版(第2版)》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具