Interviewed with Triplebyte? Your profile is about to become public

栏目: IT技术 · 发布时间: 4年前

内容简介:Fortunately this email made it through my spam filter. Looks like they want to take on LinkedIn and are planning to seed it by making existing accounts public unless you opt OUT within the next week:Hey [redacted],I’m excited to announce that we are expand

Fortunately this email made it through my spam filter. Looks like they want to take on LinkedIn and are planning to seed it by making existing accounts public unless you opt OUT within the next week:

Hey [redacted],

I’m excited to announce that we are expanding the reach of your Triplebyte profile. Now, you can use your Triplebyte credentials on and off the platform. Just like LinkedIn, your profile will be publicly accessible with a dedicated URL that you can share anywhere (job applications, LinkedIn, GitHub, etc). When you do well on a Triplebyte assessment, your profile will showcase that achievement (we won’t show your scores publicly). Unlike LinkedIn, we aim to become your digital engineering skills resume — a credential based on actual skills, not pedigree.

The new profiles will be launching publicly in 1 week. This is a great opportunity to update your profile with your latest experience and preferences. You can edit your profile privacy settings to not appear in public search engines at any time.

Our mission is to build an open, valuable, and skills-based credential for all engineers. We believe that allowing Triplebyte engineers to publicly share their profiles and skills-based credentials will accelerate this mission.

Thanks,

Ammon Co-founder & CEO, Triplebyte


以上所述就是小编给大家介绍的《Interviewed with Triplebyte? Your profile is about to become public》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

机器学习及其应用2007

机器学习及其应用2007

周志华 编 / 清华大学 / 2007-10 / 37.00元

机器学习是人工智能的一个核心研究领域,也是近年来计算机科学中最活跃的研究分支之一。目前,机器学习技术不仅在计算机科学的众多领域中大显身手,还成为一些交叉学科的重要支撑技术。本书邀请相关领域的专家撰文,以综述的形式介绍机器学习中一些领域的研究进展。全书共分13章,内容涉及高维数据降维、特征选择、支持向量机、聚类、强化学习、半监督学习、复杂网络、异构数据、商空间、距离度量以及机器学习在自然语言处理中的......一起来看看 《机器学习及其应用2007》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

在线进制转换器
在线进制转换器

各进制数互转换器

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试