Understanding And Implementing Dropout In TensorFlow And Keras

栏目: IT技术 · 发布时间: 5年前

Understanding And Implementing Dropout In TensorFlow And Keras

Implementing Dropout Technique

Using TensorFlow and Keras, we are equipped with the tools to implement a neural network that utilizes the dropout technique by including dropout layers within the neural network architecture.

We only need to add one line to include a dropout layer within a more extensive neural network architecture. The Dropout class takes a few arguments, but for now, we are only concerned with the ‘rate’ argument. The dropout rate is a hyperparameter that represents the likelihood of a neuron activation been set to zero during a training step. The rate argument can take values between 0 and 1.

keras.layers.Dropout(rate=0.2)

From this point onwards, we will go through small steps taken to implement, train and evaluate a neural network.

  1. Load tools and libraries utilized, Keras and TensorFlow
import tensorflow as tf
from tensorflow import keras

2. Load the FashionMNIST dataset, normalize images and partition dataset into test, training and validation data.

(train_images, train_labels),(test_images, test_labels) = keras.datasets.fashion_mnist.load_data()
train_images = train_images / 255.0
test_images = test_images / 255.0
validation_images = train_images[:5000]
validation_labels = train_labels[:5000]

3. Create a custom model that includes a dropout layer using the Keras Model Class API.

class CustomModel(keras.Model):
 def __init__(self, **kwargs):
 super().__init__(**kwargs)
 self.input_layer = keras.layers.Flatten(input_shape=(28,28))
 self.hidden1 = keras.layers.Dense(200, activation='relu')
 self.hidden2 = keras.layers.Dense(100, activation='relu')
 self.hidden3 = keras.layers.Dense(60, activation='relu')
 self.output_layer = keras.layers.Dense(10, activation='softmax')
 self.dropout_layer = keras.layers.Dropout(rate=0.2)

 def call(self, input):
 input_layer = self.input_layer(input)
 input_layer = self.dropout_layer(input_layer)
 hidden1 = self.hidden1(input_layer)
 hidden1 = self.dropout_layer(hidden1)
 hidden2 = self.hidden2(hidden1)
 hidden2 = self.dropout_layer(hidden2)
 hidden3 = self.hidden3(hidden2)
 hidden3 = self.dropout_layer(hidden3)
 output_layer = self.output_layer(hidden3)
 return output_layer

4. Load the implemented model and initialize both optimizers and hyperparameters.

model = CustomModel()
sgd = keras.optimizers.SGD(lr=0.01)
model.compile(loss="sparse_categorical_crossentropy", optimizer=sgd, metrics=["accuracy"])

5. Train the model for a total of 60 epochs

model.fit(train_images, train_labels, epochs=60, validation_data=(validation_images, validation_labels))

6. Evaluate the model on the test dataset

model.evaluate(test_images, test_labels)

The result of the evaluation will look similar to the example evaluation result below:

10000/10000 [==============================] - 0s 34us/sample - loss: 0.3230 - accuracy: 0.8812[0.32301584649085996, 0.8812]

The accuracy shown in the evaluation result example corresponds to the accuracy of our model of 88%.

With some fine-tuning and training with more significant epoch numbers, the accuracy could be increased by a few percentages.

Here’s a GitHub repository for the code presented in this article.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

绝对价值

绝对价值

[美] 伊塔马尔·西蒙森 艾曼纽·罗森 / 钱峰 / 中国友谊出版公司 / 2014-7 / 45.00元

绝对价值指的是经用户体验的产品质量,即使用某件产品或者享受某项服务的切实感受。 过去,消费就像是押宝。一件商品好不好,一家餐馆的环境如何,没有亲身体验过消费者无从得知,只能根据营销人员提供的有限信息去猜测。品牌、原产地、价位、广告,这些重要的质量线索左右着消费者的选择。 然而,互联网和新兴科技以一种前所未有的速度改变了商业环境。当消费者可以在购买前查看到交易记录和消费者评价,通过便捷的......一起来看看 《绝对价值》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具