A Comprehensive Guide to Generative Adversarial Networks (GANs)

栏目: IT技术 · 发布时间: 4年前

内容简介:This is the main component of the GAN. Here a generative network makes an attempt to learn the trends of the distribution and generate data belonging to this distribution.So how do we do this? Well it depends. In case of our example, for generating dog ima

This is the main component of the GAN. Here a generative network makes an attempt to learn the trends of the distribution and generate data belonging to this distribution.

So how do we do this? Well it depends. In case of our example, for generating dog images, our noise will undergo some De-Convolution Layers and finally, the output will be an image, hoping to be a dog’s. The generated image will be classified as real or fake by the discriminator. The generator will be penalized with more loss if the generated image is far from ‘being real’ and the loss will decrease as it makes progress in fooling the discriminator.

This is the basic idea behind a generator network. The architecture may differ with the use case. There are GAN architectures that are conditional i.e. there is some notion of a condition for generating data alongside the noise. Such additions may alter the architecture a bit, but the fundamental idea of the adversaries stand.

We now move on to the collective training of the generator and the discriminator.

Combined Training of the Generator and Discriminator as ‘The GAN’

So, GANs are great! But combined training of the generator and discriminator poses a problem for convergence. Let’s see how the GAN is trained.

The generator should be isolated from the discriminator and vice versa while training. In short, first the discriminator is trained for several epochs then the generator, and this sequence continues back and forth. This ensures that the training is in the right direction. Otherwise, training both at the same time would be like hitting a moving target and would possess higher chances of failure.

If you can’t train a classifier to tell the difference between real and generated data even for the initial random generator output, you can’t get the GAN training started.

Google Developer Blog

Moreover, as the generator gets better at fooling the discriminator, as a corollary, the discriminator’s accuracy decreases. There comes a point where the discriminator reaches accuracy 0.5 which suggests that the discriminator has started predicting randomly i.e. on a coin toss (which it is obviously not supposed to do). This does not help the generator training in any way and may deteriorate its performance instead.

Hence, convergence in GANs is not stable and is a major issue.

Training Loss

The GANs paper defines the training loss as:

Minimax Loss via Google Developer Blog

This is the Minimax loss, the discriminator tries to maximize it and the generator tries to minimize log(1 – D(G(z))) as it cannot touch log(D(x)).

However, the paper also suggests modifying this loss for the generator to maximize log(D(G(z))).

A Few Use Cases (to get you thinking)

  • Vanilla GANs (the ones described in the GAN paper ) can be used to augment data for training in case of imbalanced or less data.
  • Deep Convolutional Generative Adversarial Networks or DCGAN are vanilla GANs with Convolutional Layers for image generation
  • The pix2pix model can be used to take a wireframe of a structure as an input and generate the complete structure as output. Other applications include coloring black-white images.
  • CycleGAN is used to transform images from one domain to another without any paired training samples
  • DeepFake Generation and Detection is one of the latest research topics in GANs which essentially generates edited or tampered images that look realistic to the naked eye. This can be easily done manually with the help of photo/video editing softwares and hence, is vulnerable to misuse. DeepFake detection can be derived as a corollary to generation.

I will try to cover the implementation of some of these GANs in future articles. So stay tuned!

Conclusion

The main takeaway from this article is the concept of adversarial training evaluation of a generative model. This gives rise to many branches for researchers to come up with similar evaluators for better model performance.

We have also seen the idea of generative and discriminative modeling, and how they differ from each other.

We studied how GANs work and the idea behind it. We’ve had a pragmatic approach overall; we addressed the training aspect of the GANs and the issues that arise while actually training the network.

Finally, we had a word on some well-known flavors of GANs.

References:

Original paper: https://arxiv.org/abs/1406.2661

For more on the mathematical transformational aspect of GANs, refer:


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

计算理论导引

计算理论导引

[美]Michael Sipser / 张立昂、王捍贫、黄雄 / 机械工业出版社 / 2000-2 / 30.00元

本书由计算理论领域的知名权威Michael Sipser撰写。他以独特的视角,综合地描述了计算机科学理论,并以清新的笔触、生动的语言给出了宽泛的数学理论,而并非拘泥于某些低层次的技术细节。在证明之前,均有“证明思路”,帮助读者理解数学形式下蕴涵的概念。同样,对于算法描述,均以直观的文字,而非伪代码给出,从而将注意力集中于算法本身,而不是某些模型。本书的内容包括三个部分:自动机与语言、可计算性理论和一起来看看 《计算理论导引》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具