Do This Additional Step, You Have Made A Generalize Machine Learning Model

栏目: IT技术 · 发布时间: 5年前

Do This Additional Step, You Have Made A Generalize Machine Learning Model

Implementation

The first step is to split the data to train and test data. The train data will be used for cross-validation and the test data will be used as the unseen data. Then, after we split the data, we can do cross validation on the training data and you can adjust how much the amount of k you want to use. And finally, we can make a prediction on the unseen data and we can see the score how well the model is. The code for doing these is look like this,

from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.metrics import classification_report, confusion_matrix
# Split the X and Y
X = df_preprocessed.drop(default, axis = 1).values
y = df_preprocessed[default].values
# Split the dataset for cross validation and unseen data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, stratify=y)
# Doing Hyperparameter Tuning and Cross Validation without the
# unseen data using Decision Tree. Then, fit the model on it

param_grid = {
'max_depth': [i for i in range(3, 10, 2)]
}
dt = DecisionTreeClassifier(random_state=42)
clf = GridSearchCV(dt, param_grid, cv=5)
clf.fit(X_train, y_train)
# Predict the unseen data and print the score
y_pred = clf.predict(X_test)
clf.score(X_test, y_test)
classification_report(y_test, y_pred)

Based on the implementations above, I’ve got an accuracy about 88.3% on the test data. It means that the model has a good score and capable for handling the unseen data. Also, when we create the classification report using classification_report function, the result looks like this,

The main label that we want to predict, which is 1, has a really good score with 92% rate of precision and 71% rate of recall. This model still can be improved by tuning the hyper parameters and also doing some feature selection and engineering. If you want to see how my work on this, you can see my GitHub here .


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

网络是怎样连接的

网络是怎样连接的

[日]户根勤 / 周自恒 / 人民邮电出版社 / 2017-1-1 / CNY 49.00

本书以探索之旅的形式,从在浏览器中输入网址开始,一路追踪了到显示出网页内容为止的整个过程,以图配文,讲解了网络的全貌,并重点介绍了实际的网络设备和软件是如何工作的。目的是帮助读者理解网络的本质意义,理解实际的设备和软件,进而熟练运用网络技术。同时,专设了“网络术语其实很简单”专栏,以对话的形式介绍了一些网络术语的词源,颇为生动有趣。 本书图文并茂,通俗易懂,非常适合计算机、网络爱好者及相关从......一起来看看 《网络是怎样连接的》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具