Implementation
The first step is to split the data to train and test data. The train data will be used for cross-validation and the test data will be used as the unseen data. Then, after we split the data, we can do cross validation on the training data and you can adjust how much the amount of k you want to use. And finally, we can make a prediction on the unseen data and we can see the score how well the model is. The code for doing these is look like this,
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.metrics import classification_report, confusion_matrix# Split the X and Y
X = df_preprocessed.drop(default, axis = 1).values
y = df_preprocessed[default].values# Split the dataset for cross validation and unseen data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, stratify=y)# Doing Hyperparameter Tuning and Cross Validation without the
# unseen data using Decision Tree. Then, fit the model on it
param_grid = {
'max_depth': [i for i in range(3, 10, 2)]
}
dt = DecisionTreeClassifier(random_state=42)
clf = GridSearchCV(dt, param_grid, cv=5)
clf.fit(X_train, y_train)# Predict the unseen data and print the score
y_pred = clf.predict(X_test)
clf.score(X_test, y_test)
classification_report(y_test, y_pred)
Based on the implementations above, I’ve got an accuracy about 88.3% on the test data. It means that the model has a good score and capable for handling the unseen data. Also, when we create the classification report using classification_report function, the result looks like this,
The main label that we want to predict, which is 1, has a really good score with 92% rate of precision and 71% rate of recall. This model still can be improved by tuning the hyper parameters and also doing some feature selection and engineering. If you want to see how my work on this, you can see my GitHub here .
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
粒子群优化算法及其工程应用
刘波 / 2010-8 / 28.00元
《粒子群优化算法及其工程应用》的主要内容是:粒子群优化(PSO)算法是一种基于群体智能的新兴演化计算技术,广泛用于解决科学研究和工程实践中的优化问题。《粒子群优化算法及其工程应用》主要阐述粒子群优化算法的基本理论及其在机械故障诊断和机械工程测试中的应用成果。全书共5章,第1至3章介绍了PSO算法的原理和各种改进、变体PSO算法的原理,第4章介绍了PSO算法在机械工程领域的应用,第5章介绍了PSO算......一起来看看 《粒子群优化算法及其工程应用》 这本书的介绍吧!