Do This Additional Step, You Have Made A Generalize Machine Learning Model

栏目: IT技术 · 发布时间: 4年前

Do This Additional Step, You Have Made A Generalize Machine Learning Model

Implementation

The first step is to split the data to train and test data. The train data will be used for cross-validation and the test data will be used as the unseen data. Then, after we split the data, we can do cross validation on the training data and you can adjust how much the amount of k you want to use. And finally, we can make a prediction on the unseen data and we can see the score how well the model is. The code for doing these is look like this,

from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.metrics import classification_report, confusion_matrix
# Split the X and Y
X = df_preprocessed.drop(default, axis = 1).values
y = df_preprocessed[default].values
# Split the dataset for cross validation and unseen data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, stratify=y)
# Doing Hyperparameter Tuning and Cross Validation without the
# unseen data using Decision Tree. Then, fit the model on it

param_grid = {
'max_depth': [i for i in range(3, 10, 2)]
}
dt = DecisionTreeClassifier(random_state=42)
clf = GridSearchCV(dt, param_grid, cv=5)
clf.fit(X_train, y_train)
# Predict the unseen data and print the score
y_pred = clf.predict(X_test)
clf.score(X_test, y_test)
classification_report(y_test, y_pred)

Based on the implementations above, I’ve got an accuracy about 88.3% on the test data. It means that the model has a good score and capable for handling the unseen data. Also, when we create the classification report using classification_report function, the result looks like this,

The main label that we want to predict, which is 1, has a really good score with 92% rate of precision and 71% rate of recall. This model still can be improved by tuning the hyper parameters and also doing some feature selection and engineering. If you want to see how my work on this, you can see my GitHub here .


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

创新者的解答

创新者的解答

【美】克莱顿•克里斯坦森、【加】迈克尔·雷纳 / 中信出版社 / 2013-10-10 / 49.00

《创新者的解答》讲述为了追求创新成长机会,美国电信巨子AT&T在短短10年间,总共耗费了500亿美元。企业为了保持成功记录,会面对成长的压力以达成持续获利的目标。但是如果追求成长的方向出现偏误,后果往往比没有成长更糟。因此,如何创新,并选对正确方向,是每个企业最大的难题。 因此,如何创新,并导向何种方向,便在于创新结果的可预测性─而此可预测性则来自于正确的理论依据。在《创新者的解答》中,两位......一起来看看 《创新者的解答》 这本书的介绍吧!

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具