内容简介:First off let me give you an introduction about openpilot, openpilot is a open source self driving car software developed byThe openpilot model is being developed in house by comma ai but the end model files are open source and on github and are easily rea
Introduction
First off let me give you an introduction about openpilot, openpilot is a open source self driving car software developed by comma.ai . Openpilot now supports 40 of the most popular cars in the world, inlcuding Toyotas, Hondas, Acuras and many more. Openpilot is a open source project on GitHub made for people to contribute, there are also several bounties for it, that you as a developer can claim in order to get a little reward for your work. It aims to be the Android for self driving cars and this is true already supporting as mentioned above many of the most popular cars in the world.
The openpilot model
The openpilot model is being developed in house by comma ai but the end model files are open source and on github and are easily readable with Tensorflow. Two months back I attempted a minimal implementation of the model in pure python, all the way from predicting what the model does to parsing the output to displaying it to the user, the code for that can be found here .
Input
The most basic inputs are, 2 images in the yuv420p, both 6 channels, then there is a desire one hot input with shape (1,8), say if you want to do a lane change you would give the model here a different combination and it would do a lane change to the right or to the left, this was of course also used in the model training, the beautiful thing here is that is all was learned from people driving. There is also a input called traffic convention which has an input shape of (0,2) which does of course make sense because it is a one hot vector so there are 2 possibilities so left and right traffic and a (1,512) state vector which tells the model about the state from the car.
The model
In November of 2019, where I published my first blog post about behavioral cloning there was also a talk from Andrej Karpathy, Tesla at Pytorch Devcon, where he explained the driving models and saying everything is based off of a ResNet50, openpilot used ResNet18 for quite a while but now they switched to Efficientnet-B2 for the openpilot 0.7.5 model. The outputs are the left and right lane, a path prediction using those the steering angle for the car gets implemented in controlsd in the openpilot code. Then there are longitudinal outputs for the control over the brake and the gas. The model has the name supercombo because it also includes a pose net used for the lead car prediction and also for velocity estimation just from the images. The desire input and state input gets passed back to the model input from the output.
__________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_imgs (InputLayer) [(None, 12, 128, 256 0 __________________________________________________________________________________________________ permute (Permute) (None, 128, 256, 12) 0 input_imgs[0][0] __________________________________________________________________________________________________ efficientnet-b2 (Model) (None, 4, 8, 1408) 6442016 permute[0][0] __________________________________________________________________________________________________ conv2d (Conv2D) (None, 4, 8, 32) 45088 efficientnet-b2[1][0] __________________________________________________________________________________________________ batch_normalization (BatchNorma (None, 4, 8, 32) 128 conv2d[0][0] __________________________________________________________________________________________________ elu (ELU) (None, 4, 8, 32) 0 batch_normalization[0][0] __________________________________________________________________________________________________ desire (InputLayer) [(None, 8)] 0 __________________________________________________________________________________________________ traffic_convention (InputLayer) [(None, 2)] 0 __________________________________________________________________________________________________ vision_features (Flatten) (None, 1024) 0 elu[0][0] __________________________________________________________________________________________________ snpe_desire_pleaser (Dense) (None, 8) 72 desire[0][0] __________________________________________________________________________________________________ snpe_traffic_pleaser (Dense) (None, 2) 6 traffic_convention[0][0] __________________________________________________________________________________________________ proc_features (Concatenate) (None, 1034) 0 vision_features[0][0] snpe_desire_pleaser[0][0] snpe_traffic_pleaser[0][0] __________________________________________________________________________________________________ pre_gru_dense (Dense) (None, 1024) 1059840 proc_features[0][0] __________________________________________________________________________________________________ re_lu (ReLU) (None, 1024) 0 pre_gru_dense[0][0] __________________________________________________________________________________________________ rnn_state (InputLayer) [(None, 512)] 0 __________________________________________________________________________________________________ rnn_r (Dense) (None, 512) 524800 re_lu[0][0] __________________________________________________________________________________________________ rnn_rr (Dense) (None, 512) 262656 rnn_state[0][0] __________________________________________________________________________________________________ snpe_pleaser (Dense) (None, 512) 262656 rnn_state[0][0] __________________________________________________________________________________________________ add_1 (Add) (None, 512) 0 rnn_r[0][0] rnn_rr[0][0] __________________________________________________________________________________________________ rnn_z (Dense) (None, 512) 524800 re_lu[0][0] __________________________________________________________________________________________________ rnn_rz (Dense) (None, 512) 262656 rnn_state[0][0] __________________________________________________________________________________________________ rnn_rh (Dense) (None, 512) 262656 snpe_pleaser[0][0] __________________________________________________________________________________________________ activation (Activation) (None, 512) 0 add_1[0][0] __________________________________________________________________________________________________ add (Add) (None, 512) 0 rnn_z[0][0] rnn_rz[0][0] __________________________________________________________________________________________________ rnn_h (Dense) (None, 512) 524800 re_lu[0][0] __________________________________________________________________________________________________ multiply (Multiply) (None, 512) 0 rnn_rh[0][0] activation[0][0] __________________________________________________________________________________________________ activation_1 (Activation) (None, 512) 0 add[0][0] __________________________________________________________________________________________________ add_2 (Add) (None, 512) 0 rnn_h[0][0] multiply[0][0] __________________________________________________________________________________________________ one_minus (Dense) (None, 512) 262656 activation_1[0][0] __________________________________________________________________________________________________ activation_2 (Activation) (None, 512) 0 add_2[0][0] __________________________________________________________________________________________________ multiply_1 (Multiply) (None, 512) 0 activation_1[0][0] snpe_pleaser[0][0] __________________________________________________________________________________________________ multiply_2 (Multiply) (None, 512) 0 one_minus[0][0] activation_2[0][0] __________________________________________________________________________________________________ add_3 (Add) (None, 512) 0 multiply_1[0][0] multiply_2[0][0] __________________________________________________________________________________________________ dense_1_path (Dense) (None, 256) 131328 add_3[0][0] __________________________________________________________________________________________________ dense_1_left_lane (Dense) (None, 256) 131328 add_3[0][0] __________________________________________________________________________________________________ dense_1_right_lane (Dense) (None, 256) 131328 add_3[0][0] __________________________________________________________________________________________________ dense_1_lead (Dense) (None, 256) 131328 add_3[0][0] __________________________________________________________________________________________________ dense_1_long_x (Dense) (None, 256) 131328 add_3[0][0] __________________________________________________________________________________________________ dense_1_long_v (Dense) (None, 256) 131328 add_3[0][0] __________________________________________________________________________________________________ dense_1_long_a (Dense) (None, 256) 131328 add_3[0][0] __________________________________________________________________________________________________ relu_1_path (ReLU) (None, 256) 0 dense_1_path[0][0] __________________________________________________________________________________________________ relu_1_left_lane (ReLU) (None, 256) 0 dense_1_left_lane[0][0] __________________________________________________________________________________________________ relu_1_right_lane (ReLU) (None, 256) 0 dense_1_right_lane[0][0] __________________________________________________________________________________________________ relu_1_lead (ReLU) (None, 256) 0 dense_1_lead[0][0] __________________________________________________________________________________________________ relu_1_long_x (ReLU) (None, 256) 0 dense_1_long_x[0][0] __________________________________________________________________________________________________ relu_1_long_v (ReLU) (None, 256) 0 dense_1_long_v[0][0] __________________________________________________________________________________________________ relu_1_long_a (ReLU) (None, 256) 0 dense_1_long_a[0][0] __________________________________________________________________________________________________ dense_2_path (Dense) (None, 256) 65792 relu_1_path[0][0] __________________________________________________________________________________________________ dense_2_left_lane (Dense) (None, 256) 65792 relu_1_left_lane[0][0] __________________________________________________________________________________________________ dense_2_right_lane (Dense) (None, 256) 65792 relu_1_right_lane[0][0] __________________________________________________________________________________________________ dense_2_lead (Dense) (None, 256) 65792 relu_1_lead[0][0] __________________________________________________________________________________________________ dense_2_long_x (Dense) (None, 256) 65792 relu_1_long_x[0][0] __________________________________________________________________________________________________ dense_2_long_v (Dense) (None, 256) 65792 relu_1_long_v[0][0] __________________________________________________________________________________________________ dense_2_long_a (Dense) (None, 256) 65792 relu_1_long_a[0][0] __________________________________________________________________________________________________ relu_2_path (ReLU) (None, 256) 0 dense_2_path[0][0] __________________________________________________________________________________________________ relu_2_left_lane (ReLU) (None, 256) 0 dense_2_left_lane[0][0] __________________________________________________________________________________________________ relu_2_right_lane (ReLU) (None, 256) 0 dense_2_right_lane[0][0] __________________________________________________________________________________________________ relu_2_lead (ReLU) (None, 256) 0 dense_2_lead[0][0] __________________________________________________________________________________________________ relu_2_long_x (ReLU) (None, 256) 0 dense_2_long_x[0][0] __________________________________________________________________________________________________ relu_2_long_v (ReLU) (None, 256) 0 dense_2_long_v[0][0] __________________________________________________________________________________________________ relu_2_long_a (ReLU) (None, 256) 0 dense_2_long_a[0][0] __________________________________________________________________________________________________ meta_dense_1 (Dense) (None, 256) 262400 vision_features[0][0] __________________________________________________________________________________________________ dense (Dense) (None, 64) 65600 vision_features[0][0] __________________________________________________________________________________________________ dense_3_path (Dense) (None, 256) 65792 relu_2_path[0][0] __________________________________________________________________________________________________ dense_3_left_lane (Dense) (None, 256) 65792 relu_2_left_lane[0][0] __________________________________________________________________________________________________ dense_3_right_lane (Dense) (None, 256) 65792 relu_2_right_lane[0][0] __________________________________________________________________________________________________ dense_3_lead (Dense) (None, 256) 65792 relu_2_lead[0][0] __________________________________________________________________________________________________ dense_3_long_x (Dense) (None, 256) 65792 relu_2_long_x[0][0] __________________________________________________________________________________________________ dense_3_long_v (Dense) (None, 256) 65792 relu_2_long_v[0][0] __________________________________________________________________________________________________ dense_3_long_a (Dense) (None, 256) 65792 relu_2_long_a[0][0] __________________________________________________________________________________________________ meta_relu_1 (ReLU) (None, 256) 0 meta_dense_1[0][0] __________________________________________________________________________________________________ elu_1 (ELU) (None, 64) 0 dense[0][0] __________________________________________________________________________________________________ relu_3_path (ReLU) (None, 256) 0 dense_3_path[0][0] __________________________________________________________________________________________________ relu_3_left_lane (ReLU) (None, 256) 0 dense_3_left_lane[0][0] __________________________________________________________________________________________________ relu_3_right_lane (ReLU) (None, 256) 0 dense_3_right_lane[0][0] __________________________________________________________________________________________________ relu_3_lead (ReLU) (None, 256) 0 dense_3_lead[0][0] __________________________________________________________________________________________________ relu_3_long_x (ReLU) (None, 256) 0 dense_3_long_x[0][0] __________________________________________________________________________________________________ relu_3_long_v (ReLU) (None, 256) 0 dense_3_long_v[0][0] __________________________________________________________________________________________________ relu_3_long_a (ReLU) (None, 256) 0 dense_3_long_a[0][0] __________________________________________________________________________________________________ dense_1_desire_state (Dense) (None, 128) 65664 add_3[0][0] __________________________________________________________________________________________________ desire_final_dense (Dense) (None, 32) 8224 meta_relu_1[0][0] __________________________________________________________________________________________________ dense_1 (Dense) (None, 32) 2080 elu_1[0][0] __________________________________________________________________________________________________ dense_final_path (Dense) (None, 128) 32896 relu_3_path[0][0] __________________________________________________________________________________________________ dense_final_left_lane (Dense) (None, 128) 32896 relu_3_left_lane[0][0] __________________________________________________________________________________________________ dense_final_right_lane (Dense) (None, 128) 32896 relu_3_right_lane[0][0] __________________________________________________________________________________________________ dense_final_lead (Dense) (None, 128) 32896 relu_3_lead[0][0] __________________________________________________________________________________________________ dense_final_long_x (Dense) (None, 128) 32896 relu_3_long_x[0][0] __________________________________________________________________________________________________ dense_final_long_v (Dense) (None, 128) 32896 relu_3_long_v[0][0] __________________________________________________________________________________________________ dense_final_long_a (Dense) (None, 128) 32896 relu_3_long_a[0][0] __________________________________________________________________________________________________ relu_1_desire_state (ReLU) (None, 128) 0 dense_1_desire_state[0][0] __________________________________________________________________________________________________ desire_reshape (Reshape) (None, 4, 8) 0 desire_final_dense[0][0] __________________________________________________________________________________________________ elu_2 (ELU) (None, 32) 0 dense_1[0][0] __________________________________________________________________________________________________ relu_final_path (ReLU) (None, 128) 0 dense_final_path[0][0] __________________________________________________________________________________________________ relu_final_left_lane (ReLU) (None, 128) 0 dense_final_left_lane[0][0] __________________________________________________________________________________________________ relu_final_right_lane (ReLU) (None, 128) 0 dense_final_right_lane[0][0] __________________________________________________________________________________________________ relu_final_lead (ReLU) (None, 128) 0 dense_final_lead[0][0] __________________________________________________________________________________________________ relu_final_long_x (ReLU) (None, 128) 0 dense_final_long_x[0][0] __________________________________________________________________________________________________ relu_final_long_v (ReLU) (None, 128) 0 dense_final_long_v[0][0] __________________________________________________________________________________________________ relu_final_long_a (ReLU) (None, 128) 0 dense_final_long_a[0][0] __________________________________________________________________________________________________ final_desire_state (Dense) (None, 8) 1032 relu_1_desire_state[0][0] __________________________________________________________________________________________________ desire_pred (Softmax) (None, 4, 8) 0 desire_reshape[0][0] __________________________________________________________________________________________________ dense_2 (Dense) (None, 12) 396 elu_2[0][0] __________________________________________________________________________________________________ path (Dense) (None, 385) 49665 relu_final_path[0][0] __________________________________________________________________________________________________ left_lane (Dense) (None, 386) 49794 relu_final_left_lane[0][0] __________________________________________________________________________________________________ right_lane (Dense) (None, 386) 49794 relu_final_right_lane[0][0] __________________________________________________________________________________________________ lead (Dense) (None, 58) 7482 relu_final_lead[0][0] __________________________________________________________________________________________________ long_x (Dense) (None, 200) 25800 relu_final_long_x[0][0] __________________________________________________________________________________________________ long_v (Dense) (None, 200) 25800 relu_final_long_v[0][0] __________________________________________________________________________________________________ long_a (Dense) (None, 200) 25800 relu_final_long_a[0][0] __________________________________________________________________________________________________ desire_state (Softmax) (None, 8) 0 final_desire_state[0][0] __________________________________________________________________________________________________ meta (Dense) (None, 4) 1028 meta_relu_1[0][0] __________________________________________________________________________________________________ flatten (Flatten) (None, 32) 0 desire_pred[0][0] __________________________________________________________________________________________________ pose (Activation) (None, 12) 0 dense_2[0][0] ================================================================================================== Total params: 13,146,045 Trainable params: 13,078,413 Non-trainable params: 67,632 __________________________________________________________________________________________________
What you can see above is a summary of the model output by tensorflow, now let’s see what the lane and path output looks like, so here is a screenshot from my openpilot minimal repository .
The image might seem odd to you now but let me explain it, the path and the lanes are being predicted for the next 192 meters the y- axis are the next 192 meters, if it doesn’t make sense to you think about it and try to understand it.
GTA
As we have now discussed some of the most important parts about the model, I can start showing you openpilot in GTA. To understand my progress on that I would like you to know how the messaging system betweet the openpilot model and the controls works. The messaging system consists of a Master and a subsriber, openpilot has a own system called msgq, in the past zmq has been used but zmq has the big issue of sending all the messages through the kernel, msgq solves this problem using a shared memory location. The msgq has multiple channels for example channels called model, sensorEvents where from one the model prediction get sent and to sensorEvents, sensor information get sent including imu and other sensors.
So as you might see we have the first problem already, we don get any senor information out of GTA V, cars in GTA just don’t have a can bus or an imu or anything like that that would make our life easier. So because controlsd wouldn’t work without the sensors and would crash then, I first stared by making my own gta car interface which is essentially based off of a Honda civic from 2018. So rewriting that took me around 2 weeks, keep in mind I started with that project in the end of march. After those two quite frustrating weeks I had a working output for the steering angle and the gas and the brake. So using that I was able to make a simple input to GTA V and openpilot was essentially driving with the WASD keys with pynput but I wouldn’t even consider this an average 13 year old GTA online player, so I wanted to have continuous input so I tried simulating a playstation controller, turns out I spent 5 days doing useless stuff trying to get the playstation controller to work, so I switched over to a xBox controller, so that I needed to figure out now is how do I convert the model ouput to actual controller input. Turns out you need to multiply the steering output with 2,5 and add 1600 to it. For the long model the control is just just a simple if statement passed to GTA.
So what you need for acutally need is two PCs, one PC with windows and all the xbox drivers installed and one laptop or PC with Ubuntu 16.04 running openpilot with webcam, the video stream could also be send over the network or with some kind of NDI capturing system over the network but everything was already complicated enough so that I decided to stick with the webcam, I would recommend at least a 1080p webcam for any kind of openpilot webcam things, I used a Logitech C920 but the qualitiy still wasn’t really outstanding.
So to explain the whole flow all together:
image -> ubuntu laptop -> predictions with the model -> converting all the long and lateral control output -> sending it over my local network with zmq to my gaming pc -> gaming pc is emulating the xbox controller inputs -> driving in GTA!
So lets look at some final results:
A virtual self driving car, @comma_ai openpilot driving in GTA V. Add your favourite game ! https://t.co/f5IrbbA2cY pic.twitter.com/VozZPzkOq9
— littlemountainman (@littlemtman) May 4, 2020Watch the video with sound, I explain something. As we all know a video tells more than a 1000 words, if you liked the post please consider adding my blog to your RSS feed or following me on twitter for more updates.
Have a nice day !
Leon
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Internet与WWW程序设计教程(第三版)
戴特尔 / 电子工业出版社 / 2005-8 / 95.00元
《Internet与WWW程序设计教程》(第3版)以大量生动、实用的示例讲述了如何编写多层的、客户/服务器的、数据密集的、基于Web的应用程序,介绍了如何使用XHTML、JavaScript、DHTML、Flash和XML建立客户端应用程序,也介绍了如何使用Web服务器(IIS、PWS和Apache)、数据库(SQL、MySQL、DBI和ADO)、ASP、Perl、CGI、Python、PHP、J......一起来看看 《Internet与WWW程序设计教程(第三版)》 这本书的介绍吧!