内容简介:An IPC library that uses the system's shared memory to pass messages. The communication paradigm is either publish-subscibe or RPC similar to ROS and ROS2. The library was built to be used withinRequired packages: Boost, MsgpackMessage Definition (
Shadesmar
An IPC library that uses the system's shared memory to pass messages. The communication paradigm is either publish-subscibe or RPC similar to ROS and ROS2. The library was built to be used within Project MANAS .
Required packages: Boost, Msgpack
Features
-
Multiple subscribers and publishers.
-
Multithreaded RPC support.
-
Uses a circular buffer to pass messages between processes.
-
Faster than using the network stack like in the case with ROS.
-
Read and write directly from GPU memory to shared memory.
-
Decentralized, without resource starvation .
-
Allows for both serialized message passing (using
msgpack
) and to pass raw bytes. -
No need to define external IDL files for messages. Use C++ classes as message definition.
Publish-Subscribe (serialized messages)
Message Definition ( custom_message.h
):
#include <shadesmar/message.h> class InnerMessage : public shm::BaseMsg { public: int inner_val{}; std::string inner_str{}; SHM_PACK(inner_val, inner_str); InnerMessage() = default; }; class CustomMessage : public shm::BaseMsg { public: int val{}; std::vector<int> arr; InnerMessage im; SHM_PACK(val, arr, im); explicit CustomMessage(int n) { val = n; for (int i = 0; i < 1000; ++i) { arr.push_back(val); } } // MUST BE INCLUDED CustomMessage() = default; };
Publisher:
#include <shadesmar/pubsub/publisher.h> #include <custom_message.h> int main() { shm::pubsub::Publisher<CustomMessage, 16 /* buffer size */ > pub("topic_name"); CustomMessage msg; msg.val = 0; for (int i = 0; i < 1000; ++i) { msg.init_time(shm::SYSTEM); // add system time as the timestamp p.publish(msg); msg.val++; } }
Subscriber:
#include <iostream> #include <shadesmar/pubsub/subscriber.h> #include <custom_message.h> void callback(const std::shared_ptr<CustomMessage>& msg) { std::cout << msg->val << std::endl; } int main() { shm::pubsub::Subscriber<CustomMessage, 16 /* buffer size */ > sub("topic_name", callback); // Using `spinOnce` with a manual loop while(true) { sub.spinOnce(); } // OR // Using `spin` sub.spin(); }
Publish-Subscribe (raw bytes)
Publisher:
#include <shadesmar/memory/copier.h> #include <shadesmar/pubsub/publisher.h> int main() { shm::memory::DefaultCopier cpy; shm::pubsub::PublisherBin<16 /* buffer size */ > pub("topic_name", &cpy); const uint32_t data_size = 1024; void *data = malloc(data_size); for (int i = 0; i < 1000; ++i) { p.publish(msg, data_size); } }
Subscriber:
#include <shadesmar/memory/copier.h> #include <shadesmar/pubsub/subscriber.h> void callback(shm::memory::Ptr *msg) { // `msg->ptr` to access `data` // `msg->size` to access `size` // The memory will be free'd at the end of this callback. // Copy to another memory location if you want to persist the data. // Alternatively, if you want to avoid the copy, you can call // `msg->no_delete()` which prevents the memory from being deleted // at the end of the callback. } int main() { shm::memory::DefaultCopier cpy; shm::pubsub::SubscriberBin<16 /* buffer size */ > sub("topic_name", &cpy, callback); // Using `spinOnce` with a manual loop while(true) { sub.spinOnce(); } // OR // Using `spin` sub.spin(); }
RPC
Server:
#include <shadesmar/rpc/server.h> int add(int a, int b) { return a + b; } int main() { shm::rpc::Function<int(int, int)> rpc_fn("add_fn", add); while (true) { rpc_fn.serve_once(); } // OR... rpc_fn.serve(); }
Client:
#include <shadesmar/rpc/client.h> int main() { shm::rpc::FunctionCaller rpc_fn("add_fn"); std::cout << rpc_fn(4, 5).as<int>() << std::endl; }
Note:
-
shm::pubsub::Subscriber
has a boolean parameter calledextra_copy
.extra_copy=true
is faster for smaller (<1MB) messages, andextra_copy=false
is faster for larger (>1MB) messages. For message of 10MB, the throughput forextra_copy=false
is nearly 50% more thanextra_copy=true
. See_read_with_copy()
and_read_without_copy()
ininclude/shadesmar/pubsub/topic.h
for more information. -
queue_size
must be powers of 2. This is due to the underlying shared memory allocator which uses a red-black tree. Seeinclude/shadesmar/memory/allocator.h
for more information. -
You may get this error while publishing:
Increase max_buffer_size
. This occurs when the default memory allocated to the topic buffer cannot store all the messages. The default buffer size for every topic is 256MB. You can access and modifyshm::memory::max_buffer_size
. The value must be set before creating a publisher.
以上所述就是小编给大家介绍的《Shadesmar -- Fast C++ IPC using shared memory》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
科学的极致:漫谈人工智能
集智俱乐部 / 人民邮电出版社 / 2015-7 / 49.00元
集智俱乐部是一个从事学术研究、享受科学乐趣的探索者组成的团体,倡导以平等开放的态度、科学实证的精神进行跨学科的研究与交流,力图搭建一个中国的“没有围墙的研究所”。这些令人崇敬的、充满激情与梦想的集智俱乐部成员将带你了解图灵机模型、冯•诺依曼计算机体系结构、怪圈与哥德尔定理、通用人工智能、深度学习、人类计算与自然语言处理,与你一起展开一场令人热血沸腾的科学之旅。一起来看看 《科学的极致:漫谈人工智能》 这本书的介绍吧!