Gimp-ML – Machine Learning Python plugins for GIMP

栏目: IT技术 · 发布时间: 4年前

内容简介:Preprint:Set of Machine Learning Python plugins for GIMP.The plugins have been tested with GIMP 2.10 on the following machines:

GIMP-ML

Preprint: Link

Set of Machine Learning Python plugins for GIMP.

The plugins have been tested with GIMP 2.10 on the following machines:

[1] macOS Catalina 10.15.3

[2] ubuntu 18.04 LTS

Screenshot of Menu

Gimp-ML – Machine Learning Python plugins for GIMP

Installation Steps

[1] Install GIMP .

[2] Clone this repository: git clone https://github.com/kritiksoman/GIMP-ML.git

[3] Open GIMP and go to Preferences -> Folders -> Plug-ins, add the folder gimp-plugins and close GIMP.

[4] Download weights.zip (1.22 GB) and save it in gimp-plugins folder.

[5] Open terminal and run :

bash installGimpML-mac.sh bash moveWeights.sh

[6] Open GIMP.

Demo videos on YouTube

Gimp-ML – Machine Learning Python plugins for GIMP Gimp-ML – Machine Learning Python plugins for GIMP Gimp-ML – Machine Learning Python plugins for GIMP Gimp-ML – Machine Learning Python plugins for GIMP Gimp-ML – Machine Learning Python plugins for GIMP Gimp-ML – Machine Learning Python plugins for GIMP Gimp-ML – Machine Learning Python plugins for GIMP

Paper References

[1] Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network ( https://arxiv.org/abs/1609.04802 )

[2] DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better ( https://arxiv.org/abs/1908.03826 )

[3] Digging into Self-Supervised Monocular Depth Prediction ( https://arxiv.org/abs/1806.01260 )

[4] BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation ( https://arxiv.org/abs/1808.00897 )

[5] MaskGAN: Towards Diverse and Interactive Facial Image Manipulation ( https://arxiv.org/abs/1907.11922 )

[6] Perceptual Losses for Real-Time Style Transfer and Super-Resolution ( https://cs.stanford.edu/people/jcjohns/eccv16/ )

[7] Rethinking Atrous Convolution for Semantic Image Segmentation ( https://arxiv.org/abs/1706.05587 )

Code References

The following have been ported :

[1] https://github.com/switchablenorms/CelebAMask-HQ

[2] https://github.com/TAMU-VITA/DeblurGANv2

[3] https://github.com/zllrunning/face-parsing.PyTorch

[4] https://github.com/nianticlabs/monodepth2

[5] https://github.com/richzhang/colorization

[6] https://github.com/twtygqyy/pytorch-SRResNet

Citation

Please cite using the following bibtex entry:

@article{soman2020GIMPML,
  title={GIMP-ML: Python Plugins for using Computer Vision Models in GIMP},
  author={Soman, Kritik},
  journal={arXiv preprint arXiv:2004.13060},
  year={2020}
}

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Beginning Java Objects中文版从概念到代码

Beginning Java Objects中文版从概念到代码

巴克 / 万波 / 人民邮电出版社 / 2007-1 / 78.00元

《Beginning Java Objects中文版从概念到代码(第2版)》是关于软件对象和Java的,但并不是纯粹地介绍Java语言,而是强调如何从对象模型转换到功能完整的Java应用程序。书中讲述了对象基础、对象建模和模型的实现。《Beginning Java Objects中文版从概念到代码(第2版)》除了用学生注册系统(SRS)示例贯穿全书之外,还在附录中给出三个附加的案例,这些案例是每章......一起来看看 《Beginning Java Objects中文版从概念到代码》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具